

arect readout

developing technologies for **real-time** collection, processing, and distribution of Earth science data

e Direct Readout Laboratory (DRL) at NASA's Goddard Space ght Center develops technologies to maximize the utility of Eart tence data for reat-time decision-making.

- The DRL serves as the bridge between user needs and missi objectives.
 - The DRL's technology development process stresses continuand standardization.
- DRL technologies enable instant access to instrument data and derivative products from the Aqua and ferra missions and, in the future, the NPP and NPOESS missions.
- DRL technologies are designed to be scalable, extensible, portable and assv to use.

www.nasa.gov directreadout.gsfc.nasa.gov

Unification of the Global Direct Readout Community for data democratization and understanding of Earth processes as a system

Building upon NASA's mission #1: "To understand and protect our home planet":

NASA Direct Readout Program

The **Direct Readout Laboratory** (DRL) acting as the implementation arm of NASA's Direct Readout Program endeavors to:

Enable

- The utility of NASA's Earth science data
- Technologies for decision-support infrastructure
- Technology solutions for real-time and regional applications
- Continuity among missions to minimize end-user impact
- Real-time applications support systems

The DRL also provides:

- Data transport tools for NASA's Earth science data
- Real-time data processing tools that are modular, scalable, portable & extensible
- Utility via the promotion of standards in pre processing sub-systems, Science Processing Algorithms (SPAs) interfaces, visualization and real-time processing systems

Identify and understand the needs of a global community that use NASA's Direct Broadcast data.

- Promote synergy between NASA, the community and interdependent direct broadcast data users
- Act as a technical conduit between the mission and the public

Guide the direct readout community and NASA's Direct Broadcast Earth science missions.

- Bridge mission planning based on lesson's learned and the establishment that use NASA Direct Broadcast
- To provide technical and implementation insight to new missions that wish to use Direct Broadcast
- Educate on the importance and utility of NASA's data

National Aeronautics and Space Administration

Direct Readout Model

www.nasa.gov directreadout.gsfc.nasa.gov

- Utility and transportability of Earth science data
- Modularity, scalability, portability & extensibility of DR Tools
- Real-time data processing tools
- Utility via the promotion of **standards** in pre -processing sub-systems, SPAs interfaces, visualization and real-time processing systems

NPP In-Situ Ground System (NISGS)

IPOPP Framework Paradigm

Visualization & Analysis

- Together we're building the foundation for the next generation direct readout
- The DRL and its partners are developing technology tools and making available science processing algorithms (SPA's) on the road to NPP and NPOESS
- Therefore we need your participation, input and guidance
- The DRL and its partners want to ensure the use and utility of Earth science data

Terra/Aqua Direct Readout Sites

125 confirmed EOS direct readout ground systems world-wide. 50% owned by government agencies and organizations 35% owned by educational institutions, 15% owned by the commercial sector

85% of these ground stations support real-time applications.30 countries have EOS direct readout capabilities.

There are 1880 registered users on the NASA DR Portal http://directreadout.gsfc.nasa.gov Terra/Aqua/NPP & Instrument Status

• Terra & Aqua MODIS functioning nominaly on primary fomatter and RF chain

– AQUA AIRS and AMSU functioning nominaly

- Terra Mission has been given a 3 year support extension with yearly evaluation.
- NPP launch scheduled for end of 2009
 - Changed to afternoon orbit
 - OMPS on-board
 - CERES being evaluated for on-board

Direct Readout Meeting International EOS/NPP

March 31 - April 3, 2008 **Bangkok, Thailand**

developments in the understanding and applications of Direct Broadcast data. The 2008 meeting, hosted by the Asian Institute of Technology, will focus on: Please join us in Bangkok to discuss the latest

- Direct Readout Product Applications in Operations
- Direct Broadcast Missions and Instrument Status and Plans Direct Readout Application Product Sharing and
 - Direct Readout Science Processing Algorithms Transport Mechanisms
 - Direct Readout Systems

For registration, logistics, and other information, go to: http://dbmeeting.gsfc.nasa.gov

Patrick Coronado: patrick.coronado@nasa.gov

Kelvin Brentzel: kelvin.brentzel@gsfc.nasa.gov

The Direct Readout Web Portal:

http://directreadout.gsfc.nasa.gov