
Informe final* del Proyecto JM033 
Improving species distribution models of endangered plants (Orchidaceae, Pinaceae, 

Cupressaceae, Taxaceae, Podocarpaceae) in Mexico by utilizing remote sensing data and 
spatial measures of model uncertainty - in collaboration with IB - UNAM* 

 

Responsable:  Dr. Victor Werner Steinmann 

Institución:  Helmholtz Zemtrum für Umweltforschung GmbH - UFZ 

Dirección:  Permoserstraße 15, Leipzig, 04318 , ND 

Correo electrónico: victor.steinmann@inecol.edu.mx 

Teléfono/Fax: +49 (0)931-31-81865 fax: +49 (0)931-31-87358 

Fecha de inicio:  Noviembre 18, 2013. 

Fecha de término:  Diciembre 5, 2017. 

Principales 
resultados: Base de datos, cartografía, informe final. 

Forma de citar** el 
informe final y otros 
resultados: 

Cord, A. y D. Gernandt. 2017. Improving species distribution models of 
endangered plants (Orchidaceae, Pinaceae, Cupressaceae, Taxaceae, 
Podocarpaceae) in Mexico by utilizing remote sensing data and spatial 
measures of model uncertainty - in collaboration with IB - UNAM. Helmholtz 
Zemtrum für Umweltforschung GmbH - UFZ. Informe final SNIB-CONABIO, 
Proyecto No. JM033. Ciudad de México.  

Resumen:  

The project aims to develop and refine species distribution models (SDM) of the 987 plant species 
included in the Norma Oficial Mexicana NOM-059-SEMARNAT-2010 with the perspective to support 
conservation management. The SDM refinement for these endangered species includes two major 
aspects, namely (1) the inclusion of remote sensing data besides climatic data and (2) spatial 
assessments of model uncertainty. For each species, different products of distribution ranges 
(continuous, categorical) are modeled at 1 km² resolution using different algorithms (e.g. Maxent, GLM, 
RandomForest). As remote sensing predictors, Terra-MODIS time series (Enhanced Vegetation Index, 
Land Surface Temperature, Surface reflectance) which have been shown to be useful for vegetation 
classification are analyzed. The project also involves importance assessments of climate and remote 
sensing variables to explain species distributions and the extraction of species-specific phenological 
profiles. Maps of areas where climatically suitable space is not occupied by a species according to 
remotely sensed distribution ranges are produced to identify probable hot spots of anthropogenic 
habitat deterioration in the country. The use of current remote sensing data for species distribution 
modeling thus paves the way towards a national biodiversity monitoring system. 

                                                 
_______________________________________________________________________________________________ 

 * El presente documento no necesariamente contiene los principales resultados del proyecto correspondiente o la 

descripción de los mismos. Los proyectos apoyados por la CONABIO así como información adicional sobre ellos, 

pueden consultarse en www.conabio.gob.mx 

 ** El usuario tiene la obligación, de conformidad con el artículo 57 de la LFDA, de citar a los autores de obras 

individuales, así como a los compiladores. De manera que deberán citarse todos los responsables de los proyectos, 

que proveyeron datos, así como a la CONABIO como depositaria, compiladora y proveedora de la información.  En 

su caso, el usuario deberá obtener del proveedor la información complementaria sobre la autoría específica de los 

datos.   

mailto:victor.steinmann@inecol.edu.mx
http://www.conabio.gob.mx/


Comisión Nacional para el Conocimiento y Uso de la Biodiversidad 

 

Final report for the project JM033 

 

I. Project title 

“Improving species distribution models of endangered plants (Orchidaceae, 

Pinaceae, Taxaceae, Podocarpaceae) in Mexico by utilizing remote sensing 

data and spatial measures of model uncertainty“ 

 

 

 

II. General information 

Responsible for the project: 

Anna F. Cord, PhD: Helmholtz-Centre for Environmental Research – UFZ, Computational 

Landscape Ecology, Permoserstraße 15, 04318 Leipzig, Germany 

 

Collaborators: 

David S. Gernandt, PhD: Departamento de Botánica, Instituto de Biología, Universidad 

Nacional Autónoma de México, México, D.F., 04510, México (responsible for project JM 078) 

Gerardo A. Salazar Chávez, PhD: Departamento de Botánica, Instituto de Biología, 

Universidad Nacional Autónoma de México, México, D.F., 04510, México 

Michael Ewald, MSc Geoecology: freelance collaborator, Schwetzinger Straße 45, 76139 

Karlsruhe, Germany 

Eckardt Kasch, MSc Geoecology: freelance collaborator, Sophienthal 85,  

95466 Weidenberg, Germany 

Björn Reineking, PhD: UR EMGR Écosystèmes Montagnards, Irstea, 38402 St-Martin-

d’Hères, France 

 

 

 

Leipzig, September 2017  



2 

 

III. Summary (Resumen ejecutivo) 

The aim of this project – carried out as collaboration between the Helmholtz Centre for 

Environmental Research-UFZ (Germany) and the Institute of Biology of the National 

Autonomous University of Mexico (UNAM) – was to develop and refine species distribution 

models (SDMs) of 227 plant species included in the Norma Oficial Mexicana NOM-059-

SEMARNAT-2010, belonging to the families Orchidaceae (188 species), Pinaceae (30 

species), Cupressaceae (7 species), Taxaceae (1 species), and Podocarpaceae (1 species). The 

SDM refinement for these endangered species included two major aspects, namely (1) the 

inclusion of remote sensing variables (Terra-MODIS Enhanced Vegetation Index and Land 

Surface Temperature) in addition to climatic predictors and (2) the spatially-explicit assessment 

of model uncertainty. For each species, different products of distribution ranges (continuous 

and categorical) were modeled at 1 km² resolution using different algorithms (Maxent, GLM, 

and Random Forest). The project also involved importance assessments of climate and remote 

sensing variables to explain species distributions and the extraction of species-specific 

phenological profiles. Maps of areas where climatically suitable space is not occupied by a 

species according to remotely sensed distribution ranges were produced to identify probable 

hot spots of anthropogenic habitat deterioration for the modeled species. 

Only for a subset of the 227 species initially considered in the project enough unique 

species records could be compiled from existing databases and herbarium collections (done in 

the context of project JM078) to allow reasonable SDMs. In total, predictions could therefore 

be made based on climate data for 41 species and based on remote sensing data for 31 species, 

respectively. Because of the limited number of species that could be modeled based on remote 

sensing data, not enough results were available to further investigate the potential of remote 

sensing data in SDMs based on species characteristics in a conceptual framework, which was 

initially planned. However, once additional records will be available in the future, the way the 

projected was implemented in the R programming language would allow re-running models for 

the additional species. Remote sensing data showed great potential for reducing the typical 

overprediction of climate-based SDMs. Even though also predictions based only on climate 

data were produced in the project, we therefore highly recommend using the predictions for 

habitat availability (which are based on remote sensing data but also consider limitations to 

potential species distribution ranges based on climate) for further analyses. 
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V. Introduction (Introducción) 

Particular attention has been paid to climatic parameters and the potential impacts of changing 

climate on species distributions for a wide range of taxa, study areas and spatial scales (e.g. 

Araújo et al., 2005). However, despite its importance, the impact of anthropogenic land use/land 

cover (LULC) change is often not considered in species distribution modeling. We know that 

climate governs species distributions at coarse (global, continental) scales whereas LULC is a 

main aspect for presence of species at finer (regional to local) scales (Luoto et al., 2007). 

Therefore, a hierarchical framework for the interaction of climate and LULC has been proposed 

and successfully applied in species distribution modeling (Pearson et al., 2004; Thuiller et al., 

2004). Even though the incorporation of LULC data can allow identifying regions with suitable 

climate but unsuitable land cover, LULC maps are often not (thematically) detailed enough to 

improve predictions of species distributions (Bradley & Fleishman, 2008). In line with recent 

studies (e.g. Buermann et al., 2008; Saatchi et al., 2008; Tuanmu et al., 2010), we therefore 

used satellite imagery instead of LULC data as predictors in this project to model plant species 

distributions in Mexico. Especially the analysis of remote sensing time series appears promising 

to describe vegetation and habitat characteristics. 

Uncertainty in the modeled probabilities of occurrence (arising from several sources such 

as the quality of occurrence and environmental data and the choice of model algorithm) can be 

substantial and spatially structured, and uncertainty maps are an important tool for 

communicating the extent and spatial patterns of uncertainty (Elith et al. 2002). Building on 

previous case studies (Dormann et al. 2008, Buisson et al. 2010), we therefore also provide 

information about the reliability of the species distribution predictions. To account for 

prediction uncertainty due to the choice of model algorithm, several algorithms (Maxent, 

Generalized Linear Models and Random Forest) were employed and combined in so-called 

‘ensemble models’.  

The study species considered in this project (Orchidaceae: 188 species; Pinaceae: 30 

species; Cupressaceae: 7 species: Taxaceae: 1 species; Podocarpaceae: 1 species, Appendix A1) 

are endangered or at risk of extinction according to the official NOM-059-SEMARNAT-2010 

standard. Especially for those species threatened by habitat loss, maps of potential distributions 

based solely on climate data are insufficient to support sustainable conservation management 

and decision making. Therefore, reliable and detailed estimates of their current distributions 

(based for example on remote sensing data) and spatial indicators of model uncertainty are 

required to target conservation efforts. 

The main outcomes and novel technical aspects of this project were: (1) the use of a 

hierarchical modeling scheme, i.e. the implementation of species distribution models separately 

for climatic and remote sensing data and the subsequent combination of model predictions. (2) 

The species-specific selection of predictors based on predictor collinearity and explanatory 

power together with the analysis of variable importance of different products of remote sensing 

data. (3) Spatially explicit uncertainty assessments for predicted probabilities of occurrence for 

each modeled species.  
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VI. Project development (Desarrollo del Proyecto) 
1. Quality of information (Calidad de Información) 

Species records. Species records used in this project were collected within the project JM078 

(lead by Dr. David S. Gernandt, UNAM). For this purpose, available presence records of the 

227 conifer and orchid species considered in the NOM-059-SEMARNAT-2010 (Orchidaceae: 

188 species; Pinaceae: 30 species; Cupressaceae: 7 species: Taxaceae: 1 species; 

Podocarpaceae: 1 species) were compiled from existing databases and herbarium collections. 

The existing databases considered here were collected by Dr. David Sebastian Gernandt and 

Dr. Gerardo Adolfo Salazar Chávez, including the running project "Digitalización y 

Sistematización de las Colecciones Biológicas Nacionales" (KE02; Head: Dr. Víctor Manuel 

Sánchez-Cordero Dávila). The specimens in the resulting database of this project stem mainly 

from the following herbaria: the Herbario Nacional of Mexico (MEXU), the Herbario AMO 

(AMO), the California Academy of Sciences (CAS), the University of California, Berkeley 

(UC) and the New York Botanical Garden (NY). To map the distribution of non-endemic 

species of Mexico, also a limited number of records from GBIF (http://data.gbif.org) for species 

with distributions in Canada, the United States, Belize, Guatemala, Honduras and El Salvador 

were considered. The quality assessment of species records included cross referencing against 

existing catalogs, the analysis of typographic and taxonomic problems and the verification of 

their plausibility in geographical space. For those records for which no coordinates were 

available, georeferencing was done using locality information from herbariums labels, Google 

Earth and literature review. Information on species localities from SNIB (Sistema Nacional de 

Información Sobre Biodiversidad) was not included in the project as initially planned because 

of many taxonomic inconsistencies highlighted by the taxonomists involved. More detailed 

information on the species database can be found in the report of project JM078. 

 In order to avoid pseudo-replication in the species distribution models, duplicate 

records, i.e. records within the same pixel of the environmental data (WorldClim climate data, 

MODIS remote sensing data) were removed. Further, species records for which no 

environmental data were available were not considered. Based on the recommendations of 

Hijmans & Elith (2015), a minimum sample size of 20 presence localities for model building 

was accepted. Species with less than 20 records were therefore not modeled (see Appendix A1). 

This resulted in 3,162 records used for the climate-based models and 1,274 records used for the 

remote sensing-based models, respectively (Table 1, Figure 1). A full overview of records used 

in this project (in DarwinCore format) analogue to the results of project JM078 was submitted 

together with this report.  

 

Table 1. Overview of species records used for modeling. 

Family  

 

Number of records used in 

climate-based models (number 

of species) 

Number of records used in 

remote sensing-based models 

(number of species) 

Orchidaceae 653 (17) 640 (17) 

Pinaceae 2,050 (17) 393 (10) 

Cupressaceae 316 (5) 130 (2) 

Taxaceae 51 (1) 51 (1) 

Podocarpaceae 52 (1) 52 (1) 

Total 3,122 (41) 1,266 (31) 

 

http://data.gbif.org/
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Figure 1. Location of presence records used in the species distribution models for the different 

plant families considered. (a) For climate-based models, (b) for remote sensing-based models. 

 

Bioclimatic profiles. Bioclimatic profiles of the modeled species were compiled based on 

WorldClim climate data (Hijmans et al., 2005; see Fig. 2 for an example for Pinus nelsonii and 

Podocarpus matudae). The corresponding figures for the remaining species are shown in 

Appendix A2. Summarizing tables considering all WorldClim bioclimatic variables can be 

found in Appendix A3.  
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Figure 2. Bioclimatic profiles of (a) Pinus nelsonii and (b) Podocarpus matudae based on 

WorldClim climate data (Hijmans et al., 2005; current conditions). 

 

 

Profiles of land surface phenology. Phenological profiles of the modeled species were derived 

from time series data of the Terra-MODIS Enhanced Vegetation Index (EVI) from the years 

2001 to 2009 (for further details: see Section 3, Variables used in the models). For each species, 

EVI values were extracted from the raster maps at the respective presence locations. Extracted 

values were averaged for each date over all locations (Figure 3a) as well as stratified by 

biogeographic region (Figure 3b; according to CONABIO, 1997) and vegetation type (Figure 

(a) 

(b) 
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3c; Rzedowski, 1978; Rzedowski, 1990). Both mean values and standard deviation were plotted 

against time (see Appendix A4 for plots of the remaining species).  

 

 

 

 

 
Figure 3. Phenological profiles of Pinus nelsonii. (a) Summarized over all locations, (b) 

stratified by biogeographic region, and (c) stratified by vegetation type. 

 

  

(a) 

(b) 

(c) 
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2. Criteria for the selection of the reference area per species (Criterio 

de Selección de la región de referencia por especie) 

Because of the large number of species considered in this project, we had - in consultation with 

CONABIO - to refer to a fixed geographical extent. While the study area for modelling 

available habitat based on remote sensing data was confined to Mexico, the area for modelling 

potential species distributions based on climate data was set to a rectangular area of 10 degrees 

(WGS84, in all four directions) beyond the extent of Mexico (according to the GADM database 

of Global Administrative Areas, GADM 2012).  

 

3. Variables used in the models (Variables utilizadas en la 

modelación) 

Climate data. Climatic variables were obtained at 30 arc seconds (~ 0.0083 degree) spatial 

resolution from the WorldClim data base (Current conditions; Hijmans et al., 2005). WorldClim 

parameters are derived from long-term time series (1950-2000) of a global network of climate 

stations, express spatial variations in annual means, seasonality, and extreme or limiting 

climatic factors, and represent biologically meaningful variables for characterizing species 

distributions. For the species distribution models, bioclimatic layers were resampled from their 

native resolution and gridded to pixel location, cell size and extent of the remote sensing data 

to maintain spatial consistency. This was done with R 3.0.1 (R Core Team 2013) using the sp 

package version 1.0 (Pebesma & Bivand, 2005). 

 

Remote sensing data. The remote sensing parameters used in this project were selected to 

effectively describe vegetation dynamics and land surface phenology (Colditz et al., 2009; Cord 

& Rödder, 2011). Vegetation indices are an integrated measure of vegetation canopy greenness, 

a composite property of leaf area, chlorophyll and canopy structure as important dimensions of 

habitat characteristics. We used the Enhanced Vegetation Index (EVI) that is superior to the 

Normalized Difference Vegetation Index (NDVI) due to its improved sensitivity in high biomass 

regions and a reduction in atmospheric influences (Huete et al., 2002). In addition, Land Surface 

Temperature (LST) as one of the key parameters in the physics of land surface processes, e.g. 

surface-atmosphere interactions and energy fluxes, was analyzed. LST provides different 

information compared to temperature measures derived from interpolated climate station data. 

Remote sensing time series from 2001 to 2009 at 1 km² spatial resolution based on the 

Terra-MODIS 16-day standard products MOD13A2 and MOD11A2 were compiled for 

Mexico. For this purpose, the MODIS-specific pixel-level Quality Assurance Science Data Sets 

(QA-SDS) were analyzed using the TiSeG software package (Colditz et al., 2008) to exclude 

low-quality data, e.g. due to cloud cover or atmospheric contamination. With a critical 

weighting between data quality and the necessary quantity for meaningful interpolation, high-

quality data were used as vertices for pixel-level linear temporal interpolation. In addition, an 

adaptive Savitzky-Golay filter as implemented in the TIMESAT 3.0 software (Jönsson & 

Eklundh, 2004; Eklundh & Jönsson, 2009) was applied to account for high-frequency 

fluctuations and negatively-biased noise. 

From the time series data, 18 annual phenological metrics including (1) Time-related 

metrics: Start of season (date_SOS), mid of season (date_maximum), end of season (date_EOS), 

dormancy (date_dormancy), length of season (length_season), (2) Net primary productivity 

(NPP)-related metrics: Vegetation index value at SOS (value_SOS), value at EOS (value_EOS), 

maximum value (maximum), minimum value (minimum), annual range (range), accumulated 

integral during vegetation period (integral), annual mean (mean), annual median (median) and 

(3) Seasonality-related metrics: rate of green-up (rate_greenup), rate of senescence 
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(rate_senescence), shape of phenology curve (skewness), standard deviation 

(standard_deviation) and coefficient of variation (CoV). For temporal metrics referring to 

certain stages within the phenological cycle, the number of the corresponding composite 

(between 1 and 23 in accordance with the 16-day composite period of the MODIS products) 

was assigned. In addition, annual statistical metrics (minimum, mean, median, maximum, 

range, standard deviation, and coefficient of variation) were computed for the Land Surface 

Temperature (LST) time series. All metrics were averaged over the nine year period to account 

for inter-annual variation of vegetation seasonality or single-year anomalies before they were 

used as predictors in the species distribution models. 

 

Correlation analysis. To avoid model over-fitting and to exclude redundant data, 

environmental predictors (both climate and remote sensing) were carefully selected. For both 

data sets, species-specific pair-wise Spearman’s rank correlation coefficients were estimated. 

Out of each pair of highly-correlated and hence redundant environmental predictors 

(Spearman’s rank correlation coefficient |r| > 0.7) the variable with the higher explanatory 

power for each study species according to a Generalized Linear Model (GLM) based on 

presence and pseudo-absence locations was retained (select07 method in Dormann et al., 2013 

which selects variables based on removing correlations > 0.7, retaining those variables more 

important). However, because models still tended to be over-fitted in trial runs with these 

reduced predictor set for species with more than 50 occurrence records, we decided to exclude 

the time-related variables (EVI_date_SOS, EVI_date_EOS, EVI_date_maximum, EVI_date 

dormancy and EVI_length_season) due to their low mean influence (relative variable 

importance in most cases below 0.1) in the trial runs. Furthermore, because of its low ecological 

interpretability the variable EVI_skewness was excluded. Collinearity among the remaining 19 

remote sensing variables (Table 2) was analyzed using the select07 method in Dormann et al. 

(2013) as described above. An overview of how often the variables were selected is given in 

Appendix A5 (for climate) and A6 (for remote sensing).  

 

  



11 

 

Table 2. Final set of variables used in the species distribution models. 

 Short name (Abbreviation) Description 
C

li
m

at
e
 

BIO1 Annual Mean Temperature 

BIO2 Mean Diurnal Range (Mean of monthly (max - min temp)) 

BIO3 Isothermality (BIO2/BIO7) (* 100) 

BIO4 Temperature Seasonality (standard deviation *100) 

BIO5 Max Temperature of Warmest Month 

BIO6  Min Temperature of Coldest Month 

BIO7 Temperature Annual Range (BIO5-BIO6) 

BIO8 Mean Temperature of Wettest Quarter 

BIO9 Mean Temperature of Driest Quarter 

BIO10 Mean Temperature of Warmest Quarter 

BIO11 Mean Temperature of Coldest Quarter 

BIO12 Annual Precipitation 

BIO13 Precipitation of Wettest Month 

BIO14 Precipitation of Driest Month 

BIO15 Precipitation Seasonality (Coefficient of Variation) 

BIO16 Precipitation of Wettest Quarter 

BIO17 Precipitation of Driest Quarter 

BIO18 Precipitation of Warmest Quarter 

BIO19 Precipitation of Coldest Quarter 

R
em

o
te

 s
en

si
n

g
 

LST_standard_deviation (LSTSTD) 
Standard deviation of annual mean land surface 

temperature 

LST_range (LSTRANGE) Range of annual land surface temperature 

LST_minimum (LSTMIN) Minimum annual land surface temperature 

LST_median (LSTMEDIAN) Median annual land surface temperature 

LST_mean (LSTMEAN) Annual mean land surface temperature 

LST_maximum (LSTMAX) Minimum annual land surface temperature 

LST_CoV (LSTCOV) Coefficient of Variation of land surface temperature 

EVI_value_SOS (EVIVSOS) Mean Enhanced Vegetation Index at beginning of season 

EVI_value_EOS (EVIVEOS) Mean Enhanced Vegetation Index at end of season 

EVI_standard_deviation (EVISTD) 
Standard deviation of the mean annual value of the 

Enhanced Vegetation Index 

EVI_rate_senescence (EVISENES) Rate of senescence 

EVI_rate_greenup 

(EVIGREENUP) 
Rate of greenup 

EVI_range (EVIRANGE) Annual range of the Enhanced Vegetation Index 

EVI_minimum (EVIMIN) Minimum annual value of the Enhanced Vegetation Index 

EVI_median (EVIMEDIAN) Median annual value of the Enhanced Vegetation Index 

EVI_mean (EVIMEAN) Mean annual value of the Enhanced Vegetation Index 

EVI_maximum (EVIMAX) Maximum annual value of the Enhanced Vegetation Index 

EVI_integral (EVIINTEG) 
Sum of Enhanced Vegetation Index values between start 

and end of season 

EVI_CoV (EVICOV) Coefficient of Variation of the Enhanced Vegetation Index 
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4. Methods for modeling (Método de modelación) 

Generation of pseudo-absence data. Pseudo-absence data were generated following the 

target-group background approach (Phillips et al., 2009). According to this assumption, the 

influence of spatially biased samples (e.g. towards roads and protected areas, which is typical 

for biological collections) can be reduced by comparing the occurrences with background points 

reflecting the same spatial bias. The underlying idea is that a model based on presence and 

background data with the same bias will not focus on the sample selection bias, but on any 

differentiation between the distribution of the occurrences and that of the background. Because 

the species analyzed in this study are from different families, all species records belonging to 

the kingdom Plantae within the study area extent were extracted from the GBIF database 

(http://data.gbif.org) (in total 1,990,527 records). From this dataset, two randomized subsets of 

10,000 unique locations were selected as pseudo-absence data sets for the potential species 

distributions (based on climate data) and the extent of available habitat (based on remote 

sensing data) (Figure 4 a and b). 

 

 
 

Figure 4. Location of pseudo-absence records. a) For climate-based models, b) For remote 

sensing-based models. 

 

 

Model algorithms and ensemble modeling. Since the choice of model algorithm is a major 

component of prediction uncertainty in species distribution modeling (Dormann et al., 2008; 

http://data.gbif.org/
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Buisson et al., 2010), several algorithms were employed in order to estimate and account for 

prediction uncertainty. The modelling procedure was conducted for both, potential distribution 

and available habitat, using the same methodology. If not mentioned otherwise, model 

adjustments were identical for both. All modelling procedures were performed using R version 

3.1.2 (R Core Team 2014). The final models were run on a Linux-based cluster with 1,024 

computing cores and 5TB RAM with a CentOS 6.5 as operating system.  

We used three modeling methods that are representative for different classes of model 

algorithms, namely regression-based methods, machine-learning methods and presence-only 

methods. Generalized Linear Models (GLM), Random Forest (RF) and Maxent (Maximum 

Entropy) version 3.3.3e were applied as implemented in the biomod2 package version 3.1 

(Thuiller et al., 2014). Presences and pseudo-absences were weighted equally and were used as 

response variables. Model runs were repeated 199 times for each species and model algorithm, 

randomly selecting 70% of the presences and pseudo-absences for model calibration and 30% 

for model testing in each model run. Models were scaled between 0 and 1,000 to ensure 

comparability of model predictions derived from the different model algorithms. To generate 

ensemble (“consensus”) models from the results of these three algorithms, the ROC (Relative 

or Receiver Operating Characteristic) was used as evaluation metric (see the documentation of 

the biomod2 package for further information). For species with more than 100 occurrences (see 

below), additional model predictions were made using Generalized Additive Models (GAM) 

and Boosted Regression Trees (BRT). These additional models were done with 10 repetitions. 

The specific parameters used for each modeling algorithm are described in further detail in 

section 5 ‘Parameters used for modeling’. 

 

Conversion to binary maps and combination of climate and remote sensing-based model 

predictions. From the resulting consensus maps (i.e., based on GLM, RF and Maxent; see 

above), binary species-specific distribution maps were created by applying three different 

threshold values that give different weight to omission and commission errors: The ‘minimum 

training presence’, ‘10 percentile training presence’, and ‘maximum training sensitivity plus 

specificity’ threshold. The ‘minimum training presence threshold’ (representing the lowest 

value observed in the continuous prediction map at a presence location for a specific species) 

aims at minimizing omission errors at the expense of a greater fractional predicted area per 

species and may lead to model overprediction (Jarnevich & Reynolds, 2011). The ‘10 percentile 

training presence threshold’ provides more conservative models by predicting the 10% most 

extreme presence observations as absent. Finally, the ‘maximum sensitivity and specificity 

threshold’ gives equal weight to both omission and commission errors (sensitivity = true 

positive rate and specificity = true negative rate of the predictions) and aims at maximizing 

both. It was identified as among the best approaches by Liu et al. (2005). Sensitivity and 

specificity values were calculated using the PresenceAbsence package version 1.1.9 (Freeman 

& Moisen, 2008).  

Climatic and remote sensing-based species distribution models were finally integrated 

in a hierarchical modeling framework where first the potential distribution range (based on the 

‘10 percentile training presence’ threshold) was modeled based on climate data and then 

remotely sensed habitat availability within this climatic range was integrated in a hierarchical 

model design. These maps of current habitat availability were only produced for the Mexican 

national territory. We finally used binary maps based on the ‘10 percentile training presence’ 

threshold to calculate maps of habitat loss by subtracting available habitat from the potential 

distributions. 
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5. Parameters used for modeling (Parámetros utilizados en la 

modelación) 

Maxent. Maxent models were run using auto features, but excluding threshold and hinge 

features, with the number of iterations limited to 500. To optimize model performance, the 

regularization parameter β (to be applied to all linear, quadratic and product features; Phillips, 

2006) was determined in trial runs for species with more than 80 occurrences for climate-based 

models (Pseudotsuga menziesii glauca, Abies concolor, Cupressus lusitanica, Calocedrus 

decurrens, Pinus attenuata, Pinus jeffreyi, Pinus coulteri, Rhynchostele cervantesii, Pinus 

muricata, Prosthechea vitellina) and for species with more than 50 occurrences for remote 

sensing-based models (Cupressus lusitanica, Pinus pinceana, Podocarpus matudae, 

Prosthechea vitellina, Pseudotsuga menziesii glauca, Rhynchostele cervantesii, Taxus 

globosa). For this purpose, we compared model performance using regularization multipliers 

of 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.25, 0.5, 0.75, 1, 2, 5 and 10 separately for climate and 

remote sensing variables. For the final models, the regularization parameter with the highest 

mean AUC value in these trial runs was chosen (climate: β=0.02, remote sensing: β=0.002). 

Generalized Linear Models. Generalized Linear Models (GLM) were fitted using a binomial 

link function, including linear and quadratic terms as well as linear interaction terms of the 

environmental predictors. Interactions considered in the models were chosen based on their 

ecological meaningfulness which implied that interactions among temperature variables and 

interactions among precipitation variables were not allowed. A stepwise backward selection 

procedure starting with the full model was applied to select final models (MASS package, 

Venables & Ripley 2002). In each step, the model was simplified and the Bayesian Information 

Criterion (BIC) of the simplified model was compared to the BIC of the previous model. This 

procedure was repeated until the BIC reached its minimum. Simplification was done by 

dropping the variable which leads to a maximum decrease of BIC compared to the starting 

model. 

Random Forest. As for Maxent, algorithmic settings for RF models were determined in trial 

runs for species more than 80 occurrences for climate-based models and for species with more 

than 50 occurrences for remote sensing-based models. For this purpose, the number of trees 

was tested between 500 and 3,000 in six steps and the number of tries was tested between 1 and 

5 in five steps (again separately for climate and remote sensing variables). For each of these 30 

different settings, the mean R² of the ‘out-of-bag error estimate’ (R²oob) over all test species 

was calculated. The oob is the average misclassification over all trees tested by using the out-

of-bag examples (out-of-bag examples are the data that are left after bootstrapping the training 

data; Livingston, 2005). The settings with the highest mean R²oob were chosen for the final 

models (Leutner et al. 2012). Based on these results, the following settings were applied: 

Climate data: 2,500 trees, 2 tries; Remote sensing data: 500 trees, 1 try. 

Generalized additive models (GAM) and boosted regression trees (BRT). As for the other 

algorithms, algorithmic settings for BRT models were determined in trial runs for species more 

than 80 occurrences for climate-based models and for species with more than 50 occurrences 

for remote sensing-based models. For this purpose, the number of trees was tested between 

1,500 and 2,500 in three steps. The tree complexity parameter was tested between 3 and 5 in 

three steps. The learning rate was tested between 0.005 and 0.008 in four steps. The bag fraction 

was tested between 0.5 and 0.8 in four steps. For each of these 144 different settings, the mean 

of deviance over all test species was calculated. This was done separately for climate and remote 

sensing variable. Based on these results, the following settings were applied: climate: number 
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of trees = 2,500, tree complexity = 5, learning rate = 0.007 and bag fraction = 0.8; remote 

sensing: number of trees = 1,500, tree complexity = 4, learning rate = 0.005 and bag fraction = 

0.8. All other parameters of BRT models were set to default. The smoothing parameter k in the 

GAM models was set to 30. To allow for a comparison among the different model algorithms, 

predictions were made for the species Abies concolor, Calocedrus decurrens, Cupressus 

lusitanica, Pinus attenuata and Pseudotsuga menziesii glauca using the GLM, RF, Maxent, 

GAM and BRT algorithms with 10 repetitions and the model settings described above. Results 

showed no significant differences to models run with only GLM, RF and Maxent. 

6. Model evaluation (Evaluación del modelo) 

Variable importance. Variable importance for GLM, RF, GAM and BRT models was 

calculated using the implemented algorithm of the package biomod2 (function 

‘variables_importance()’). This method is based on a comparison of the model prediction 

derived from the original dataset and predictions derived from permuted datasets. These 

permuted datasets were created by randomizing one environmental variable for each data set. 

The predicted values of permuted datasets and the original dataset for presence/pseudo-absence 

locations were compared by calculating the Pearson correlation coefficient. This procedure was 

repeated three times for each variable. The smaller the correlation coefficient was the higher 

was the independent influence of the permuted variable. Values of variable importance were 

finally calculated by subtracting the correlation coefficient from 1. For the Maxent models, 

variable importance was additionally expressed by the regularized model gain for each variable. 

For all three algorithms (GLM, Maxent and RF), BIO4 (Temperature seasonality), BIO14 

(Precipitation of Driest Month) and BIO15 (Precipitation Seasonality) showed the highest 

variable importance among the climatic predictors considered. On average, 3.19 ± 0.65 (mean 

± standard deviation) remote sensing variables were selected based on the collinearity and 

variable importance analysis (select07 method) per species. These belonged in 11.6% to EVI-

based and in 25.8% to LST-based variables. While there was a high variability regarding 

variable importance among the different study species, minimum LST turned out to have the 

highest average variable importance for all three algorithms.  

 

Model performance based on AUC, partial AUC and model deviance. We quantified model 

performance by calculating AUC values, partial AUC values and model deviance. The AUC 

value is the area under the Receiver Operating Characteristic curve (ROC) and describes the 

ability of the model to discriminate between 0 and 1, or absence and presence respectively 

(Peterson et al., 2008). The ROC is created by plotting the fraction of true presences out of 

observed presences (sensitivity) against the fraction of false presences out of observed absences 

(1-specificity), for different threshold levels. AUC values were calculated using the package 

PresenceAbsence version 1.1.9 (Freeman, 2008). The partial AUC values gives the ratio of the 

AUC of the model to the AUC of a random model in a defined range of sensitivity or specificity, 

were the model is supposed to make predictions. We used the range of sensitivity between 0.2 

and 1, following Peterson et al. (2008) who recommend restricting AUC calculations “to the 

domain within which omission error is sufficiently low as to meet user-defined requirements of 

predictive ability”. The partial AUC values were calculated by using the package pROC version 

1.7.3 (Robin et al., 2011). The model deviance is a log-likelihood ratio statistics that compares 

the saturated model with the proposed model. The model deviance was calculated as: D=-

2*(yi*log(ui))+((1-yi)*log(1-ui))n, where yi is the binary observed presence at a locations, ui is 

the predicted probability at a location and n is the number of all presences and absences. In 

addition, we used presence-absence records from the Mexican National Forest Inventory 

(INFyS, Inventario Nacional Forestal y de Suelos) for model validation for those species that 
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were included in the INFyS database. For this purpose, AUC and model deviance were 

calculated by using the INFyS presence-absence data as true presence-absence data. All 

climate-based models showed very good performance measures based on AUC (i.e. > 0.9) and 

partial AUC (i.e. > 0.7). For those species for which an additional model evaluation based on 

INFyS data was possible, the obtained (partial)AUC scores were much lower, especially for 

models using GLMs. Model performance of the remote sensing-based models was lower with 

only 54% of the models having AUC scores of 0.9 or higher. 94% of the models, however, 

showed AUC scores above 0.7 and partial AUC scores above 0.5. Again, model deviance was 

highest for GLMs. 

 

Exemplary model results. As two examples of a ‘good’ and a ‘bad’ model, the modeled habitat 

availability of Pinus nelsonii and Podocarpus matudae are shown in Figure 5. The known 

distribution of P. nelsonii (according to Farjon and Filer, 2013) is limited to Coahuila, Nuevo 

León, San Luis Potosí and Tamaulipas, in foothills or lower slopes of the Sierra Madre Oriental 

– which is well-captured by the model prediction. The species is restricted to sites on rocky 

limestone with shallow soils (Farjon and Filer, 2013). Apparently, while climate-based SDMs 

tended to overestimate distribution ranges for this species (data not shown), the inclusion of 

remote sensing data allowed identifying those sites with suitable habitat conditions. In addition 

to the distribution in Coahuila, Nuevo León, San Luis Potosí and Tamaulipas, the model for 

habitat availability also predicted potential habitat in Hidalgo and Puebla, though with lower 

suitability scores. The model of habitat suitability for P. matudae, however, overestimated 

habitat availability, in particular on the Yucatán peninsula. The species occurs from Honduras 

to Tamaulipas and Jalisco in Mexico and is mostly found in mixed pine forest, pine-oak forest, 

montane rain forest and evergreen cloud forest at altitudes between 600 and 2,600m (Farjon 

and Filer, 2013). Such habitat types do not exist on the Yucatán peninsula. However, even 

though only one record from Jalisco was included in this project, the model correctly predicted 

habitat availability in the Sierra Madre del Sur – Farjon and Filer (2013) list herbarium records 

of P. matudae from this region. 
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Figure 5. Modeled habitat availability of (a) Pinus nelsonii and (b) Podocarpus matudae. The 

inset map in (a) shows the main distribution range of P. nelsonii on karst limestone outcrops 

in the Sierra Madre Oriental. 

 

 

Spatial assessment of model uncertainty. Maps of spatially explicit model uncertainty were 

derived by calculating the difference between the 97.5-percentile and the 2.5-percentile of cell 

values derived from the continuous prediction maps, based on 199 model repetition runs. For 

species with 40 or more independent presence locations, uncertainty maps were calculated 

using the predictions of the Maxent, GLM and RF models. For species with less than 40 

independent presence locations, only the Maxent predictions were considered. Results showed 

that model uncertainty was generally higher in areas with high predicted suitability and lowest 

in those region with the lowest suitability (i.e. that all model algorithms and repetitions 

consistently predicted low suitability). In the case of Podocarpus matudae (Figure 6), the 

uncertainty map revealed that the overestimated species distribution on the Yucatán peninsula 

was modeled with comparatively high uncertainties. Uncertainty maps therefore can effectively 

help refining species distribution predictions. 
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For three species with a wide spatial distribution all over Mexico (Cupressus lusitanica, Pinus 

strobiformis, Pseudotsuga menziesii glauca), a spatially stratified resampling scheme was 

implemented. For each of those species, we performed a k-means clustering (Hartigang & 

Wong, 1979) using a maximum number of 10 iterations on the presence/pseudo-absence data 

to derive 199 center points. Using each of the center points, the original dataset was divided 

into 199 calibration datasets and one validation dataset. During each iteration, 30% of the 

presence/pseudo-absence points with the smallest distance to the center points were chosen as 

validation data and the remaining 70 % of the points as calibration data. Our aim here was to 

test for the relative contributions of different components of model uncertainty (occurrence 

data, environmental data, and model algorithm) using generalized linear models (according to 

Buisson et al., 2010). For this purpose, the mean predicted probability of each replicate model 

run was used as response and the used model type, data type (climatic or remote sensing) and 

replicate number as explanatory variables (glm(formula = x ~ data + occurence + modeltype,    

family = gaussian). For all species, we found significant effects (p < 0.001) of the environmental 

data (i.e. climate or remote sensing) and the model algorithm (Maxent, GLM, RF) used, but not 

for the occurrence data (i.e. random vs. spatially stratified resampling, p > 0.05).  

 

 
Figure 6. Uncertainty map for modeled habitat availability of Podocarpus matudae. 
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7. Conclusions and recommendations (Conclusiones y 

recomendaciones) 

The project aims, i.e. the development and refinement of species distribution models by (1) the 

inclusion of remote sensing variables (Terra-MODIS Enhanced Vegetation Index and Land 

Surface Temperature) in addition to climatic predictors and (2) the spatially-explicit assessment 

of model uncertainty could be achieved. The main limitation was the limited number of verified 

herbarium records available as training data – a typical phenomenon for very rare species as in 

the NOM – which did allow model building only for a fraction of the species considered. More 

efforts therefore have to be undertaken to compile reliable information on species presence that 

is readily accessible online. 

 Remote sensing data showed great potential for reducing the typical overprediction of 

climate-based SDMs. Even though also predictions based only on climate data were produced 

in the project, we therefore highly recommend using the predictions for habitat availability 

(which are based on remote sensing data but also include potential distributions based on 

climate) for further analyses. SDMs based on remote sensing data only, however, also in most 

cases overestimated distribution ranges. The combination of climate and remote sensing data 

therefore appears to be the most promising approach for modeling species distributions.  

 However, species records were mostly collected during a different time period than the 

remote sensing data. More specifically, 314 records were collected between 2001 and 2009 

(which is exactly the time period that the remote sensing data cover), 57 records were collected 

after 2009, and 2,294 records were collected before 2001. Information concerning the collection 

date was missing for 497 records. In summary, the majority of records were hence collected 

before satellite data was available, with a mean collection year of 1968. How big the impact of 

this temporal mismatch on the applicability of the model predictions is largely depends on the 

characteristic of the collection sites. If specimen were collected in a site where almost no change 

in vegetation cover has happened over the last few decades and where the species is still present 

today, effects on the resultant prediction maps will be minimal. As many collectors of field data 

tend to sample undisturbed and well-established populations, this will hold true at least for a 

part of the records. On the other hand, in case land use/land cover change has happened in the 

collection site (making the site no longer suitable for the species of concern) between the 

collection date of the records and the acquisition date of the remote sensing data, this record 

will be unsuitable for model training and should be left out. Generally, SDMs and the 

algorithms used in this project can deal with some outliers or wrong records in the training data; 

however, models will be significantly biased, if a large fraction of the records is affected by 

this. Apparently, it is not possible to quantify the overall effects of the temporal mismatch of 

species records and remote sensing data based on the data at hand. A rigorous approach would 

require a lot of additional field work in order to collect recent data in those collection sites that 

could be affected by land use/land cover change. We therefore recommend taking this into 

account when interpreting remote sensing-based model results.  

Further, the compiled maps of habitat loss are an indicator of anthropogenic impacts but 

should not be overinterpreted and directly be used for decision-making. Other factors not 

captured by climate but by remote sensing data (e.g. natural disturbances) may lead to areas 

being identified as ‘lost habitat’ independent of any human impact. Obviously, the map 

indicating total habitat loss (a summary of the species-specific habitat loss maps) is biased in 

the way that it considers only a small number of species and therefore is not representative for 

the entire country.  

For some species, the different model algorithms used showed large differences 

regarding model performance (AUC, partial AUC and model deviance). We therefore 

recommend using ensemble models based on different algorithms for species distribution 
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modeling. The high variable importance of LST-derived parameters again supports the 

importance of considering additional predictors beyond the ‘classical’ vegetation indices in 

SDMs. Further research is needed to fully explore the relevance of the broad array of remotely 

sensed parameters available for use in SDMs. 

In the future, remotely sensed time series will be operationally available at much higher 

spatial resolutions (e.g. from the ESA Sentinel satellites) and provide a unique opportunity for 

assessing habitat availability and species diversity in space and time. Due to the automated 

implementation of the modeling framework used in this project, the methods developed and 

used here can (with slight modifications) transferred to remote sensing data with other spatial 

resolutions available in the near future. In summary, future research therefore should focus on 

(1) the applicability of other remotely sensed parameters not considered here for predicting 

species distributions, (2) differences in the performance of remote sensing-based SDMs for 

species associated with different habitat types and (3) the potential of remote sensing data to 

verify (and falsify) species occurrence records.  
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9. Appendix 

1. Documentation of delivered materials (Documentación del material 

entregado) 

See the following pages 
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A1. Species considered in this project. Overview of species considered and modeled in the project. 

Family 
Names of included 

species (NOM-059) 

Accepted names of included species 

(project JM078) 

Species 

with 

models 

Species 

without 

models 

Short name 

(maps and 

metadata) 

Unique 

records 

in 

database 

(covered 

by 

climate 

data) 

Model 

algorithm

(s) used 

for final 

climate-

based 

models 

Unique 

records in 

database 

(covered 

by remote 

sensing 

data) 

Model 

algorith

m(s) 

used for 

final 

remote 

sensing-

based 

models 

Pinaceae Abies concolor Abies concolor x  ABICON 577 
Maxent, 

GLM, RF 
10  

Pinaceae Abies flinckii Abies flinckii  x  6  16  

Pinaceae Abies guatemalensis Abies guatemalensis  x  15  14  

Pinaceae Abies hickelii Abies hickelii  x  16  15  

Pinaceae Abies vejari Abies vejarii x  ABIVEJ 27 Maxent 24 Maxent 

Pinaceae Abies vejari mexicana Abies vejarii subsp. mexicana  x  0  0  

Orchidaceae Acianthera eximia 
Acianthera eximia (L.O. Williams) 

Solano 
 x  8  9  

Orchidaceae Acianthera unguicallosa 
Acianthera unguicallosa (Ames & C. 

Schweinf.) Solano 
 x  2  2  

Orchidaceae Acianthera violacea 
Acianthera violacea (A. Rich. & 

Galeotti) Pridgeon & M.W. Chase 
 x  0  0  

Orchidaceae Acineta barkeri Acineta barkeri (Bateman) Lindl.  x  6  5  

Orchidaceae Anathallis abbreviata 
Anathallis abbreviata (Schltr.) 

Pridgeon & M.W. Chase 
 x  0  0  

Orchidaceae Anathallis oblanceolata 
Anathallis oblanceolata (L.O. 

Williams) Solano & Soto Arenas 
 x  1  1  

Orchidaceae Aspidogyne stictophylla Aspidogyne stictophylla (Schltr.) Garay  x  12  10  

Orchidaceae Barbosella prorepens Barbosella prorepens (Rchb. f.) Schltr.  x  2  2  

Orchidaceae Barkeria dorotheae Barkeria dorotheae Halb.  x  4  4  

Orchidaceae Barkeria melanocaulon 
Barkeria melanocaulon A. Rich. & 

Galeotti 
 x  11  13  

Orchidaceae Barkeria scandens 
Barkeria scandens (Lex.) Dressler & 

Halb. 
 x  19  19  
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Orchidaceae Barkeria shoemakeri Barkeria shoemakeri Halb.  x  0  0  

Orchidaceae Barkeria skinneri 
Barkeria skinneri (Bateman ex Lindl.) 

Lindl. ex Paxton 
 x  4  7  

Orchidaceae Barkeria strophinx Barkeria strophinx (Rchb. f.) Halb.  x  2  2  

Orchidaceae Barkeria whartoniana 
Barkeria whartoniana (C. Schweinf.) 

Soto Arenas 
 x  3  7  

Orchidaceae Bletia urbana Bletia urbana Dressler  x  3  8  

Cupressaceae Calocedrus decurrens Calocedrus decurrens x  CALDEC 109 

Maxent, 

GLM, 

RF 

9  

Orchidaceae 
Caularthron 

bilamellatum 

Caularthron bilamellatum (Rchb. f.) 

R.E. Schultes 
 x  0  0  

Orchidaceae Chysis bractescens Chysis bractescens Lindl.  x  12  18  

Orchidaceae Chysis limminghei Chysis limminghei Linden & Rchb. f.  x  3  2  

Orchidaceae Clowesia glaucoglossa 
Clowesia glaucoglossa (Rchb. f.) 

Dodson 
 x  2  1  

Orchidaceae Clowesia rosea Clowesia rosea Lindl.  x  7  7  

Orchidaceae 
Cochleanthes 

flabelliformis 

Cochleanthes flabeliformis (Sw.) R.E. 

Schultes & Garay 
 x  0  0  

Orchidaceae Coelia densiflora Coelia densiflora Rolfe  x  5  5  

Orchidaceae Corallorhiza macrantha Corallorhiza macrantha Schltr.,  x  9  9  

Orchidaceae Cryptarrhena lunata Cryptarrhena lunata R. Br.  x  0  0  

Orchidaceae Cuitlauzina candida 
Cuitlauzina candida (Lindl.) Dressler 

& N.H. Williams, 2003 
 x  3  3  

Orchidaceae 
Cuitlauzina 

convallarioides 

Cuitlauzina convallarioides (Schltr.) 

Dressler & N.H. Williams 
 x  0  0  

Orchidaceae Cuitlauzina pendula Cuitlauzina pendula Lex.  x  10  11  

Cupressaceae 
Cupressus arizonica 

montana 
Callitropsis montana  x  0  0  

Cupressaceae Cupressus forbesii Callitropsis forbesii x  CUPFOR 36 Maxent 0  

Cupressaceae Cupressus guadalupensis Callitropsis guadalupensis  x  2  2  

Cupressaceae Cupressus lusitanica Callitropsis lusitanica x  CUPLUS 111 

Maxent, 

GLM, 

RF 

106 

Maxent, 

GLM, 

RF 

Orchidaceae Cycnoches ventricosum Cycnoches ventricosum Bateman x  CYCVEN 23 Maxent 23 Maxent 
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Orchidaceae 
Cypripedium 

dickinsonianum 
Cypripedium dickinsonianum Hágsater  x  0  0  

Orchidaceae Cypripedium irapeanum Cypripedium irapeanum Lex.  x  0  0  

Orchidaceae 
Cyrtochiloides 

ochmatochila 

Cyrtochiloides ochmatochila (Rchb.f.) 

N.H. Williams & M.W. Chase 
 x  3  3  

Orchidaceae Dignathe pygmaeus Dignathe pygmaeus Lindl.  x  0  0  

Orchidaceae Dracula pusilla Dracula pusilla (Rolfe) Luer  x  3  2  

Orchidaceae Dryadella guatemalensis Dryadella guatemalensis (Schltr.) Luer  x  5  6  

Orchidaceae 
Elleanthus 

hymenophorus 

Elleanthus hymenophorus (Rchb. f.) 

Rchb. f. 
 x  0  0  

Orchidaceae Encyclia adenocaula Encyclia adenocaula (Lex.) Schltr. x  ENCADE 46 

Maxent, 

GLM, 

RF 

45 

Maxent, 

GLM, 

RF 

Orchidaceae Encyclia atrorubens Encyclia atrorubens (Rolfe) Schltr.  x  0  0  

Orchidaceae Encyclia distantiflora 
Oestlundia distantiflora (A. Rich. & 

Galeotti) Dressler & Pollard 
 x  0  0  

Orchidaceae Encyclia kienastii 
Encyclia kienastii (Rchb. f.) Dressler & 

G.E. Pollard 
 x  5  7  

Orchidaceae Encyclia lorata 
Encyclia lorata Dressler & G.E. 

Pollard 
 x  1  1  

Orchidaceae Encyclia pollardiana 
Encyclia pollardiana (Withner) 

Dressler & G.E. Pollard 
 x  7  7  

Orchidaceae Encyclia tuerckheimii Encyclia tuerckheimii Schltr.  x  2  5  

Orchidaceae 
Epidendrum 

alabastrialatum 

Epidendrum alabastrialatum 

G.E.Pollard ex Hágsater 
 x  7  5  

Orchidaceae Epidendrum alticola Epidendrum alticola Ames & Correll  x  4  5  

Orchidaceae Epidendrum cerinum Epidendrum cerinum Schltr.  x  7  8  

Orchidaceae Epidendrum chloe Epidendrum chloe Rchb. f.  x  5  6  

Orchidaceae 
Epidendrum 

cnemidophorum 
Epidendrum cnemidophorum Lindl.  x  15  18  

Orchidaceae Epidendrum coronatum Epidendrum coronatum Ruiz & Pav.  x  1  1  

Orchidaceae Epidendrum cystosum Epidendrum cystosum Ames  x  3  3  

Orchidaceae 
Epidendrum 

dorsocarinatum 
Epidendrum dorsocarinatum Hágsater  x  2  2  

Orchidaceae Epidendrum dressleri Epidendrum dressleri Hágsater  x  0  0  
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Orchidaceae 
Epidendrum 

incomptoides 

Epidendrum incomptoides Ames, F.T. 

Hubb. & C. Schweinf. 
 x  1  1  

Orchidaceae Epidendrum isthmii Epidendrum isthmi Schltr.  x  0  0  

Orchidaceae Epidendrum pansamalae Epidendrum pansamalae Schltr.  x  4  4  

Orchidaceae Epidendrum skutchii 
Epidendrum skutchii Ames, F.T. Hubb. 

& C. Schweinf. 
 x  5  5  

Orchidaceae 
Epidendrum 

smaragdinum 
Epidendrum smaragdinum Lindl.  x  5  5  

Orchidaceae Epidendrum sobralioides 
Epidendrum sobralioides Ames & 

Correll 
 x  0  0  

Orchidaceae Erycina crista-galli 
Erycina crista-galli (Rchb. f.) N.H. 

Williams & M.W. Chase 
 x  12  11  

Orchidaceae Erycina pumilio 
Erycina pumilio (Rchb. f.) N.H. 

Williams & M.W. Chase 
 x  0  0  

Orchidaceae Euchile citrina 
Prosthechea citrina (Lex.) W.E. 

Higgins 
 x  0  0  

Orchidaceae Euchile mariae Prosthechea mariae (Ames) Hoehne  x  0  0  

Orchidaceae Eurystyles borealis Eurystyles borealis A.H. Heller  x  0  0  

Orchidaceae Galeandra batemanii Galeandra batemanii Rolfe  x  3  5  

Orchidaceae Galeottia grandiflora Galeottia grandiflora A.Rich.  x  0  0  

Orchidaceae Galeottiella sarcoglossa 
Galeottiella sarcoglossa (A. Rich. & 

Galeotti) Schltr. 
 x  11  11  

Orchidaceae Gongora tridentata Gongora tridentata Whitten  x  0  0  

Orchidaceae Govenia tequilana 
Govenia tequilana Dressler & 

Hágsater 
 x  0  0  

Orchidaceae Guarianthe skinneri 
Guarianthe skinneri (Bateman) 

Dressler & W.E. Higgins 
 x  5  6  

Orchidaceae Habenaria umbratilis 
Habenaria umbratilis Ames & L.O. 

Williams 
 x  0  1  

Orchidaceae 
Hagsatera 

brachycolumna 

Hagsatera brachycolumna (L.O. 

Williams) R. González 
 x  8  10  

Orchidaceae Ionopsis satyrioides Ionopsis satyrioides (Sw.) Rchb. f.  x  0  0  

Orchidaceae Jacquiniella gigantea 
Jacquiniella gigantea Dressler, Salazar 

& García-Cruz 
 x  2  2  

Cupressaceae Juniperus californica Juniperus californica x  JUNCAL 37 Maxent 16  

Cupressaceae 
Juniperus sabinoides 

monticola 
Juniperus monticola x  JUNSAB 23 Maxent 24 Maxent 
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Orchidaceae Kefersteinia lactea Kefersteinia tinschertiana Pupulin  x  0  0  

Orchidaceae Kraenzlinella hintonii 
Kraenzlinella hintonii (L.O. Williams) 

Solano 
 x  2  2  

Orchidaceae Lacaena bicolor Lacaena bicolor Lindl.  x  0  0  

Orchidaceae Laelia anceps dawsonii 
Laelia anceps Lindl. subsp. dawsonii 

(J. Anderson) Rolfe 
 x  10  10  

Orchidaceae Laelia gouldiana Laelia gouldiana Rchb. f.  x  7  7  

Orchidaceae Laelia speciosa Laelia speciosa (Kunth) Schltr. x  LAESPE 43 

Maxent, 

GLM, 

RF 

43 

Maxent, 

GLM, 

RF 

Orchidaceae Laelia superbiens Laelia superbiens Lindl.  x  13  12  

Orchidaceae Lepanthes ancylopetala Lepanthes ancylopetala Dreesler  x  1  1  

Orchidaceae Lepanthes guatemalensis Lepanthes guatemalensis Schltr.  x  2  2  

Orchidaceae Lepanthes parvula Lepanthes parvula Dressler  x  2  2  

Orchidaceae Lepanthopsis floripecten 
Lepanthopsis floripecten (Rchb. f) 

Ames 
 x  2  3  

Orchidaceae Ligeophila clavigera Ligeophila clavigera (Rchb. f.) Garay  x  11  12  

Orchidaceae Lycaste lasioglossa Lycaste lasioglossa Rchb. f.  x  1  1  

Orchidaceae Lycaste skinneri 
Lycaste skinneri (Bateman ex Lindl.) 

Lindl. 
 x  11  11  

Orchidaceae Lyroglossa pubicaulis 
Lyroglossa pubicaulis (L.O.Williams) 

Garay 
 x  0  0  

Orchidaceae Macradenia brassavolae Macradenia brassavolae Rchb. f.  x  0  0  

Orchidaceae Malaxis greenwoodiana 
Malaxis greenwoodiana Salazar & 

Soto Arenas 
 x  4  4  

Orchidaceae Malaxis hagsateri Malaxis hagsateri Salazar  x  5  4  

Orchidaceae Malaxis pandurata Malaxis pandurata (Schltr.) Ames  x  0  0  

Orchidaceae Maxillaria alba Maxillaria alba (Hook.) Lindl.  x  4  3  

Orchidaceae Maxillaria nasuta Maxillaria nasuta Rchb. f.  x  3  3  

Orchidaceae Maxillaria oestlundiana Maxillaria oestlundiana L.O.Williams  x  0  0  

Orchidaceae Maxillaria tonsoniae Maxillaria tonsoniae Soto-Arenas  x  11  11  

Orchidaceae 
Mexipedium 

xerophyticum 

Mexipedium xerophyticum (Soto 

Arenas, Salazar & Hágsater) V.A. 

Albert & M.W. Chase 

 x  0  0  
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Orchidaceae 
Mormodes maculata 

unicolor 

Mormodes maculata (Klotzch) L.O. 

Williams var. unicolor (Klotzsch) L.O. 

Williams 

x  MORMAC 19 Maxent 19 Maxent 

Orchidaceae 
Mormodes 

porphyrophlebia 
Mormodes porphyrophlebia Salazar  x  0  0  

Orchidaceae 
Mormodes 

sanguineoclaustra 
Mormodes sanguineoclaustra Fowl.  x  3  3  

Orchidaceae Mormodes sotoana Mormodes sotoana Salazar  x  1  1  

Orchidaceae Mormodes uncia Mormodes uncia Rchb. f.  x  0  0  

Orchidaceae Nemaconia dressleriana Nemaconia dressleriana Soto Arenas  x  0  0  

Orchidaceae Nemaconia pellita 
Nemaconia pellita (Rchb.f.) van den 

Berg, Salazar & Soto Arenas 
 x  0  0  

Orchidaceae Oestlundia distantiflora 
Oestlundia distantiflora (A. Rich. & 

Galeotti) Dressler & Pollard 
 x  7  5  

Orchidaceae Oncidium endocharis Oncidium endocharis Rchb.f.  x  5  5  

Orchidaceae Oncidium ensatum Oncidium ensatum Lindl.  x  7  7  

Orchidaceae Oncidium exauriculatum 
Oncidium exauriculatum (Hamer & 

Garay) Jiménez 
 x  1  1  

Orchidaceae Oncidium incurvum Oncidium incurvum Barker ex Lindl. x  ONCINC 35 Maxent 39 Maxent 

Orchidaceae Oncidium leucochilum Oncidium leucochilum Barker ex Lindl. x  ONCLEU 27 Maxent 30 Maxent 

Orchidaceae 
Oncidium 

ochmatochilum 
Oncidium ochmatochilum Rchb.f.  x  0  0  

Orchidaceae Oncidium pollardii Oncidium iricolor Rchb. f.  x  5  6  

Orchidaceae Oncidium stelligerum Oncidium stelligerum Rchb. f.  x  9  9  

Orchidaceae Oncidium suttonii Oncidium suttonii Batem ex Lindley  x  0  0  

Orchidaceae Oncidium tigrinum Oncidium tigrinum Lex. x  ONCTIG 23 Maxent 22 Maxent 

Orchidaceae Oncidium unguiculatum Oncidium unguiculatum Lindl. x  ONCUNG 24 Maxent 26 Maxent 

Orchidaceae 
Oncidium 

wentworthianum 

Oncidium wentworthianum Bateman ex 

Lindl. 
 x  3  3  

Orchidaceae 
Osmoglossum 

convallarioides 

Cuitlauzina convallarioides (Schltr.) 

Dressler & N.H. Williams 
 x  0  0  

Orchidaceae 
Pachyphyllum 

mexicanum 

Pachyphyllum mexicanum Dressler & 

Hágsater 
 x  6  6  

Orchidaceae Palumbina candida 
Cuitlauzina candida (Lindl.) Dressler 

& N.H. Williams 
 x  0  0  
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Orchidaceae Papperitzia leiboldii Leochilus leiboldii Rchb. f.  x  4  4  

Orchidaceae Pelexia congesta Pelexia congesta Ames & Schweinf.  x  2  1  

Orchidaceae 
Phragmipedium 

exstaminodium 

Phragmipedium humboldtii J.T. 

Atwood & Dressler subsp. 

exstaminodium (Castaño, Hágsater & 

E.Aguirre) J.T. Atwood & Dressler ex 

J.M.H. Shaw 

 x  0  0  

Orchidaceae Physogyne gonzalezii 
Physogyne gonzalezii (L.O. Williams) 

Garay 
 x  1  1  

Pinaceae Picea chihuahuana Picea chihuahuana  x  12  15  

Pinaceae 
Picea engelmannii 

mexicana 
Picea mexicana  x  6  7  

Pinaceae Picea martinezii Picea martinezii  x  0  0  

Pinaceae Pinus attenuata Pinus attenuata x  PINATT 103 

Maxent, 

GLM, 

RF 

7  

Pinaceae 
Pinus caribaea 

hondurensis 
Pinus caribaea var. hondurensis x  PINCAR 72 

Maxent, 

GLM, 

RF 

6  

Pinaceae 
Pinus contorta 

murrayana 
Pinus contorta subsp. murrayana x  PINCON 52 

Maxent, 

GLM, 

RF 

10  

Pinaceae Pinus coulteri Pinus coulteri x  PINCOU 98 

Maxent, 

GLM, 

RF 

9  

Pinaceae Pinus culminicola Pinus culminicola x  PINCUL 31 Maxent 24 Maxent 

Pinaceae Pinus jaliscana Pinus jaliscana  x  5  4  

Pinaceae Pinus jeffreyi Pinus jeffreyi x  PINJEF 98 

Maxent, 

GLM, 

RF 

18  

Pinaceae Pinus johannis Pinus johannis x  PINJOH 23 Maxent 23 Maxent 

Pinaceae Pinus lagunae Pinus lagunae  x  0  0  

Pinaceae Pinus martinezii Pinus douglasiana  x  0  0  

Pinaceae Pinus maximartinezii Pinus maximartinezii  x  16  18  

Pinaceae Pinus monophylla Pinus californiarum x  PINCAL 39 Maxent 20 Maxent 
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Pinaceae Pinus muricata Pinus muricata x  PINMUR 86 

Maxent, 

GLM, 

RF 

9  

Pinaceae Pinus nelsonii Pinus nelsonii x  PINNEL 27 Maxent 27 Maxent 

Pinaceae Pinus pinceana Pinus pinceana x  PINPIN 59 

Maxent, 

GLM, 

RF 

59 

Maxent, 

GLM, 

RF 

Pinaceae Pinus quadrifolia Pinus quadrifolia x  PINQUA 47 

Maxent, 

GLM, 

RF 

40 

Maxent, 

GLM, 

RF 

Pinaceae Pinus remota Pinus remota  x  16  13  

Pinaceae Pinus rzedowskii Pinus rzedowskii  x  8  8  

Pinaceae Pinus strobiformis Pinus strobiformis x  PINSTR 59 

Maxent, 

GLM, 

RF 

49 

Maxent, 

GLM, 

RF 

Pinaceae Pinus strobus chiapensis Pinus chiapensis x  
PINSTRC

HI 
41 

Maxent, 

GLM, 

RF 

40 

Maxent, 

GLM, 

RF 

Orchidaceae Platystele caudatisepala 
Platystele caudatisepala (C. Schwein 

f.) Garay 
 x  1  1  

Orchidaceae 
Platystele 

jungermannioides 

Platystele jungermannioides (Schltr.) 

Garay 
 x  0  0  

Orchidaceae Platystele repens Platystele repens (Ames) Garay  x  0  0  

Orchidaceae Platythelys venustula Platythelys venustula (Ames) Garay  x  0  0  

Orchidaceae Pleurothallis hintonii 
Kraenzlinella hintonii (L.O. Williams) 

Solano 
 x  0  0  

Orchidaceae Pleurothallis nelsonii Pleurothallis nelsonii Ames  x  3  3  

Orchidaceae 
Pleurothallis 

saccatilabia 
Pleurothallis saccatilabia C. Schweinf.  x  0  0  

Orchidaceae 
Pleurothallopsis 

ujarensis 

Pleurothallopsis ujarensis (Rchb.f.) 

Pridgeon & M.W. Chase 
 x  0  0  

Podocarpaceae Podocarpus matudae Podocarpus matudae x  PODMAT 52 

Maxent, 

GLM, 

RF 

52 

Maxent, 

GLM, 

RF 

Orchidaceae Ponthieva brittoniae 
Ponthieva brittoniae Ames & C. 

Schwinf. 
 x  3  4  

Orchidaceae Prosthechea abbreviata 
Prosthechea abbreviata (Schltl.) W.E. 

Higgins 
 x  0  0  
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Orchidaceae Prosthechea citrina 
Prosthechea citrina (Lex.) W.E. 

Higgins 
x  PROCIT 41 

Maxent, 

GLM, 

RF 

36 Maxent 

Orchidaceae Prosthechea mariae 
Prosthechea mariae (Ames) W.E. 

Higgins 
 x  13  11  

Orchidaceae Prosthechea neurosa 
Prosthechea neurosa (Ames) W.E. 

Higgins 
 x  10  10  

Orchidaceae Prosthechea vagans 
Prosthechea vagans (Ames) W.E. 

Higgins 
 x  0  0  

Orchidaceae Prosthechea vitellina 
Prosthechea vitellina (Lindl.) W.E. 

Higgins 
x  PROVIT 86 

Maxent, 

GLM, 

RF 

83 

Maxent, 

GLM, 

RF 

Orchidaceae 
Pseudocranichis 

thysanochila 

Galeoglossum thysanochilum (B.L. 

Rob. & Greenm.) Salazar 
 x  0  4  

Orchidaceae 
Pseudogoodyera 

pseudogoodyeroides 

Pseudogoodyera pseudogoodyeroides 

(Rchb. f.) Schltr. 
 x  4  0  

Pinaceae 
Pseudotsuga menziesii 

glauca 
Pseudotsuga menziesii var. glauca x  PSEMEN 611 

Maxent, 

GLM, 

RF 

87 

Maxent, 

GLM, 

RF 

Orchidaceae Restrepia lankesteri 
Restrepia trichoglossa F.Lehm. ex 

Sander 
 x  0  0  

Orchidaceae Rhynchostele beloglossa 
Rhynchostele beloglossa (Rchb. f.) 

Dressler & N.H. Williams 
 x  4  4  

Orchidaceae Rhynchostele cervantesii 
Rhynchostele cervantesii (Lex.) Soto 

Arenas & Salazar 
x  RHYCER 95 

Maxent, 

GLM, 

RF 

94 

Maxent, 

GLM, 

RF 

Orchidaceae Rhynchostele cordata 
Rhynchostele cordata (Lindl.) Soto 

Arenas & Salazar 
x  RHYCOR 46 

Maxent, 

GLM, 

RF 

42 

Maxent, 

GLM, 

RF 

Orchidaceae 
Rhynchostele 

ehrenbergii 

Rhynchostele ehrenbergii (Link, 

Klotzsch & Otto) Soto Arenas & 

Salazar 

x  RHYEHR 24 Maxent 21 Maxent 

Orchidaceae Rhynchostele galeottiana 
Rhynchostele galeottiana (A. Rich.) 

Soto Arenas & Salazar 
 x  0  0  

Orchidaceae 
Rhynchostele 

londesboroughiana 

Rhynchostele londesboroughiana 

(Rchb.f.) Halbinger 
 x  5  5  

Orchidaceae Rhynchostele madrensis 
Rhynchostele madrensis (Rchb.f.) Soto 

Arenas & Salazar 
 x  11  9  
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Orchidaceae Rhynchostele majalis 

Rhynchostele majalis (Rchb.f.) 

Halbinger y (Rchb.f.) Soto Arenas & 

Salazar 

 x  4  4  

Orchidaceae Rhynchostele pygmaea Rhynchostele pygmaea (Lindl.) Rchb. f.  x  8  7  

Orchidaceae Rhynchostele rossii 
Rhynchostele rossii (Lindl.) Soto 

Arenas & Salazar 
x  RHYROS 43 

Maxent, 

GLM, 

RF 

41 

Maxent, 

GLM, 

RF 

Orchidaceae Rhynchostele uroskinneri 
Rhynchostele uroskinneri (Lindl.) Soto 

Arenas & Salazar 
 x  0  0  

Orchidaceae Rodriguezia dressleriana Rodriguezia dressleriana R. González  x  2  2  

Orchidaceae Rossioglossum grande 
Rossioglossum grande (Lindl.) Garay 

& G.C.Kenn. 
 x  5  6  

Orchidaceae Rossioglossum insleayi 
Rossioglossum insleayi (Barker ex 

Lindl.) Garay & G.C. Kenn. 
 x  0  0  

Orchidaceae Rossioglossum splendens 
Rossioglossum splendens (Rchb.f.) 

Garay & G.C. Kenn. 
 x  0  0  

Orchidaceae 
Rossioglossum 

williamsianum 

Rossioglossum williamsianum (Rchb. 

f.) Garay & G.C. Kenn. 
 x  0  0  

Orchidaceae Sarcoglottis cerina Sarcoglottis cerina (Lindl.) P.N. Don  x  3  4  

Orchidaceae Scelochilus tuerckheimii 
Comparettia tuerckheimii (Schltr.) 

M.W. Chase & N.H. Williams 
 x  0  0  

Orchidaceae Schiedeella nagelii 
Schiedeella nagelii (L.O. Williams) 

Garay 
 x  6  6  

Orchidaceae 
Sigmatostalix 

guatemalensis 

Oncidium poikilostalix  (Kraenzl.) 

M.W. Chase & N.H. Williams 
 x  0  0  

Orchidaceae Sigmatostalix mexicana 
Oncidium mexicanum (L.O. Williams) 

M.W. Chase & N.H. Williams 
 x  5  6  

Orchidaceae Sobralia crispissima Sobralia crispissima Dressler  x  1  1  

Orchidaceae Sobralia mucronata Sobralia mucronata Ames  x  4  4  

Orchidaceae Specklinia digitale 
Specklinia digitale (Luer) Pridgeon & 

M.W. Chase 
 x  19  16  

Orchidaceae Specklinia endotrachys 
Specklinia endotrachys (Rchb. f.) 

Pridgeon & M.W. Chase 
 x  15  15  

Orchidaceae Specklinia fimbriata 
Specklinia fimbriata C. Schweinf. & 

(Ames & C. Schweinf.) Solano 
 x  4  4  

Orchidaceae Specklinia glandulosa 
Specklinia glandulosa (Ames) Pridgeon 

& M.W. Chase 
 x  0  0  
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Orchidaceae Specklinia lateritia 
Specklinia lateritia (Rchb.f.) Pridgeon 

& M.W. Chase 
 x  0  0  

Orchidaceae Spiranthes torta 
Spiranthes torta (Thunb.) Garay & 

H.R. Sweet 
 x  1  1  

Orchidaceae Stanhopea ecornuta Stanhopea ecornuta Lem.  x  2  1  

Orchidaceae Stanhopea oculata Stanhopea oculata (G.Lodd.) Lindl. x  STAOCU 22 Maxent 20 Maxent 

Orchidaceae Stanhopea tigrina Stanhopea tigrina Bateman x  STATIG 24 Maxent 24 Maxent 

Orchidaceae Stelis chihobensis Stelis chihobensis Ames  x  7  7  

Orchidaceae Stelis cobanensis 
Stelis cobanensis (Schltr.) Pridgeon & 

M.W. Chase 
 x  18  18  

Orchidaceae Stelis deregularis Stelis deregularis Barb. Rodr.  x  3  2  

Orchidaceae Stelis nigriflora 
Stelis nigriflora (L.O. Williams) 

Pridgeon & M.W. Chase 
 x  4  4  

Orchidaceae Stellilabium standleyi Telipogon standleyi Ames  x  1  1  

Taxaceae Taxus globosa Taxus globosa x  TAXGLO 51 

Maxent, 

GLM, 

RF 

51 

Maxent, 

GLM, 

RF 

Orchidaceae Teuscheria pickiana Teuscheria pickiana (Schltr.) Garay  x  0  0  

Orchidaceae 
Trichocentrum 

flavovirens 

Trichocentrum flavovirens L.O. 

Williams 
 x  6  6  

Orchidaceae Trichocentrum hoegei Trichocentrum hoegei Rchb. f.  x  9  8  

Orchidaceae 
Trichocentrum 

stramineum 

Trichocentrum stramineum (Bateman 

ex Lindl.) M.W. Chase & N.H. Williams 
 x  14  16  

Orchidaceae Trichopilia galeottiana 
Trichopilia galeottiana A.Rich. & 

Galeotti 
 x  3  2  

Orchidaceae Trichopilia subulata Trichopilia subulata (Sw.) Rchb.f.  x  0  0  

Orchidaceae 
Trichosalpinx 

cedralensis 
Trichosalpinx cedralensis (Ames) Luer  x  0  0  

Orchidaceae Vanilla planifolia Vanilla planifolia Jacks. x  VANPLA 32 Maxent 32 Maxent 

Orchidaceae Warrea costaricensis Warrea costaricensis Schltr.  x  1  1  
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2. Quality of information (Calidad de información) 

The following Appendices (A2, A3, A4 and A5) are submitted as separate files together with this 

report. 

 

A2. Climatic profiles (table). Summary of climatic conditions at the presence localities used in 

the species distribution models (mean and standard deviation). 

 

A3. Climatic profiles (boxplots). Summary of climatic conditions at the presence localities used 

in the species distribution models (mean and standard deviation). 

 

A4 and A5. Profiles of land surface phenology (tables). Species-specific phenological profiles 

obtained from remotely sensed time series of the Enhanced Vegetation Index (a) for all occurrence 

localities together, (b) stratified by biogeographic provinces and (c) stratified by vegetation types. 

 

A5. Profiles of land surface phenology (figures). Species-specific phenological profiles obtained 

from remotely sensed time series of the Enhanced Vegetation Index for all occurrence localities 

together and stratified by biogeographic provinces and vegetation types. 
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3. Other information 

A6. Overview of how often each climate variable was selected for the species distribution 

models (as a result of the collinearity and variable importance analysis). 0.293 means that the 

variable was selected in 29.3% of the models. 

Variable Mean Standard deviation 

BIO1 0.000 0.000 

BIO2 0.293 0.461 

BIO3 0.073 0.264 

BIO4 0.439 0.502 

BIO5 0.610 0.494 

BIO6 0.024 0.156 

BIO7 0.049 0.218 

BIO8 0.317 0.471 

BIO9 0.146 0.358 

BIO10 0.098 0.300 

BIO11 0.024 0.156 

BIO12 0.000 0.000 

BIO13 0.073 0.264 

BIO14 0.780 0.419 

BIO15 1.000 0.000 

BIO16 0.122 0.331 

BIO17 0.220 0.419 

BIO18 0.415 0.499 

BIO19 1.000 0.000 
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A7. Overview of how often each remote sensing variable was selected for the species 

distribution models (as a result of the collinearity and variable importance analysis). 0.677 means 

that the variable was selected in 67.7% of the models. 

Variable Mean Standard deviation 

EVI_CoV 0.677 0.475 

EVI_integral 0.000 0.000 

EVI_maximum 0.065 0.250 

EVI_mean 0.000 0.000 

EVI_median 0.129 0.341 

EVI_minimum 0.129 0.341 

EVI_range 0.000 0.000 

EVI_rate_greenup 0.194 0.402 

EVI_rate_senescence 0.000 0.000 

EVI_standard_deviation 0.129 0.341 

EVI_value_EOS 0.032 0.180 

EVI_value_SOS 0.032 0.180 

LST_CoV 0.129 0.341 

LST_maximum 0.194 0.402 

LST_mean 0.258 0.445 

LST_median 0.226 0.425 

LST_minimum 0.903 0.301 

LST_range 0.065 0.250 

LST_standard_deviation 0.032 0.180 
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Additional material delivered. The following additional material was delivered upon completion 

of the project: 

- Database of the georeferenced localities of the 227 species considered in the project 

(DarwinCore format, compiled in the context of project JM078) 

- Detailed description of the variables used for distribution modeling (tabular format) 

- Species-specific overview of variables used in the species distribution models (tabular format) 

- Variable importance: Contribution of environmental variables to explaining species 

distribution patterns for both climate and remote sensing data (tabular format) 

- Model evaluation (based on AUC, partial AUC and model deviance) (tabular format) 

- R-Code for species distribution modeling including remote sensing data and model 

uncertainty analysis  

- Digital maps of distributions of the species modeled in the project: 

(a) Climatic ranges (for distribution range from southern USA to Central America): 

1. Continuous probability of occurrence 

2. Binary distribution map at minimum training presence threshold 

3. Binary distribution map at 10 percentile training presence threshold 

4. Binary distribution map at maximum training sensitivity plus specificity threshold 

 

(b) Habitat availability within bioclimatic range derived from remote sensing time series 

(only for Mexico) 

1. Continuous probability of occurrence 

2. Binary distribution map at minimum training presence threshold 

3. Binary distribution map at 10 percentile training presence threshold 

4. Binary distribution map at maximum training sensitivity plus specificity threshold 

 

(c) Species-specific maps of habitat loss computed from climatic distribution ranges and 

remotely sensed land surface properties 

(d) Cumulative habitat loss across all study species 

(e) Species-specific uncertainty maps based on the difference between the 97.5-percentile 

and the 2.5-percentile of values derived from the continuous prediction maps (based on 

199 model repetition runs) 
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