Informe final* del Proyecto LH003 Inventario ictiofaunístico de los humedales de Puerto Morelos. Quintana Roo

Responsable: Dr. Omar Domínguez Domínguez

Institución: Universidad Michoacana de San Nicolás de Hidalgo

Facultad de Biología

Laboratorio de Biología Acuática

Dirección: Av. Francisco J. Mújica s/n, Felícitas del Río, Morelia, Mich, 58040,

México

Teléfono/Fax: Tel: (443) 3 95 15 00, Fax: 443 3167412

Fecha de inicio: Octubre 15, 2014. Fecha de término: Diciembre 2, 2016.

Principales

resultados:

Base de datos, fotografías, informe final.

Forma de citar** el informe final v otros

resultados:

Domínguez-Domínguez O., Palacios Morales, G., Martínez Servín, F., López Arroyo, Y. M., Moreno Vázquez, A. L., Sánchez Jiménez, J. A., Arrendondo Chávez, A. T. y J. A. Caballero Vázquez. 2016. Inventario ictiofaunístico de los humedales de Puerto Morelos, Quintana Roo. Universidad Michoacana de San Nicolás de Hidalgo. Facultad de Biología. Informe final SNIB-CONABIO, Proyecto No. LH003. Ciudad

de México.

Resumen:

La presente propuesta pretende generar un listado sistemático de las clases Chondrichthyes v Acthinopterygii de los ecosistemas arrecifales, estuarinos, dulceacuícolas y pelágicos, que permita conocer la riqueza ictiofaunísitica de la zona costera de esta importante región del Caribe mexicano, incluyendo los sitios comprendidos dentro del polígono presentado en la figurado 2 de los términos de referencia denominado "humedales de Puerto Morelos". Para la captura cualitativa, el material habrá de colectarse empleando diversas artes de pesca tales como. chinchorro, atarraya, red agallera, anzuelo y arpón, red de mano, trampas luz y bombas de succión. Se han ubicado aproximadamente 25 sitios de muestreo y colecta. Se empleará equipo de buceo autónomo SCUBA. Se pretende obtener 1000 registros curatoriales con al menos 4000 ejemplares colectados de aproximadamente 250 especies. Las colectas se conservaran en el campo con formol al 10%, se depositaran en bolsas de nylon y se colocaran en cubetas de 20 litros para su traslado y posterior análisis en laboratorio. Los muestreos se realizarán preferentemente en diferentes horas del día y en diferente orden de sitios en cada visita, para obtener representatividad y el mayor número de especies. Los ejemplares serán fijados y preservados para su depósito en la Colecciónes de Peces de la Universidad Michoacana (CPUM), En la Colección de Peces del Colegio de la Frontera Sur - Unidad Chetumal y de la Unidad de Ciencias del Agua (CP-UCIA).

 ^{*} El presente documento no necesariamente contiene los principales resultados del proyecto correspondiente
o la descripción de los mismos. Los proyectos apoyados por la CONABIO así como información adicional
sobre ellos, pueden consultarse en www.conabio.gob.mx

^{**} El usuario tiene la obligación, de conformidad con el artículo 57 de la LFDA, de citar a los autores de obras individuales, así como a los compiladores. De manera que deberán citarse todos los responsables de los proyectos, que proveyeron datos, así como a la CONABIO como depositaria, compiladora y proveedora de la información. En su caso, el usuario deberá obtener del proveedor la información complementaria sobre la autoría específica de los datos.

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO Facultad de Biología

INFORME FINAL DEL PROYECTO LH003 "INVENTARIO ICTIOFAUNISITCO DE LOS HUMEDALES DE PUERTO MORELOS, QUINTANA ROO"

Puerto Morelos, Quintana Roo, 15 de Octubre de 2015

INFORME FINAL DEL PROYECTO LH003 "INVENTARIO ICTIOFAUNISITCO DE LOS HUMEDALES DE PUERTO MORELOS, QUINTANA ROO"

Responsable: Dr. Omar Domínguez Domínguez

Institución: Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Biología, Laboratorio de Biología Acuática.

Dirección postal: Edificio "R" Planta Baja, Ciudad Universitaria, Avenida Francisco J. Mújica S/N. Colonia Felicitas del Río, C.P. 58040, Morelia, Michoacán.

Teléfono y fax: Tel: (443) 3 95 15 00, Fax: 443 3167412

Palabras clave: Ictiofauna, Puerto Morelos, Quintana Roo, Chondrichtyes y Acthinopterygii

Lista de resultados: 1015 registros, 1528 organismos colectados, en 135 géneros y 257 especies

Participantes: Biól. Georgina Palacios Morales, P de B. Yareli Margarita López Arroyo, P de B Aurora Lizeth Moreno Vázquez, P de B Francisco Martínez Servín, Biól. Juan Antonio Sánchez Jiménez, Biol. Alfrancis Teresa Arrendondo Chávez, P de B Marcos Noé López Zacarías, Biol. David Tafolla Venegas, M en C Xavier Madrigal Guridi, Dr. José Adán Caballero Vázquez, Dr. Omar Domínguez Domínguez

RESUMEN

Los sistemas marinos, dulceacuícolas y estuarinos en el Caribe mantienen una riqueza y variabilidad ictiológica con una amplitud de escalas espaciales, temporales y de organización. Si bien es invaluable la función ecológica que juegan dichos sistemas para el mantenimiento de desarrollos turísticos como los de Cancún e Isla Mujeres, también es notorio el alarmante incremento en la degradación ambiental de la zona. Sin embargo, aún estamos lejos de conocer la riqueza íctica de los humedales del Caribe mexicano, por lo que a presente investigación tuvo como objetivo realizar un inventario ictiofaunístico de los ecosistemas arrecifales, pelágicos, dulceacuícolas y estuarinos de Puerto Morelos, Quintana Roo y con ello aportar información básica que ayude a estudios de monitoreo posteriores, así como a la conservación y manejo de la zona. La zona de estudio abarco el polígono del Parque Nacional Arrecifes de Puerto Morelos. Las artes de pesca utilizadas fueron tan diversas como los sitios de colecta, incluyendo redes tipo chinchorro, atarrayas, agalleras y de mano, se utilizaron arpones de liga y anestésicos para peces más pequeños, además de registrar la captura de los pescadores de la zona. Se tomaron también fotografías de los sitios, peces recolectados y videotransectos. Los peces fueron fijados en formol al 5 o 10% y preservados en etanol al 70%. Las colectas se desarrollaron de Octubre del 2014 a Mayo del 2015, en 55 sitios de Puerto Morelos, abarcando sitios con arrecife coralino, arrecife rocoso, arrecife artificial, cabezas de coral, arenal, pastos marinos, zona pelágica/mar abierto, manglar, laguna artificial, cenote e intermareal rocoso. Se incorporaron 1015 registros a la base de datos en el programa BIOTICA 5.0. La cual consta de 1528 organismos pertenecientes a 254 especies de 135 géneros, 66 familias y 19 órdenes. Se tomaron un total de 270 fotografías y se realizaron 10 videotransectos. Las familias con mayor número de especies fueron Haemulidae, Gobiidae y Serranidae. Los géneros más representativos fueron Haemulon (Haemulidae) y Lutjanus (Lutjanidae). Del total de las especies, 15 son capturadas con fines comerciales, mientras que cuatro fueron registradas como especies de importancia médica. Esta investigación aumenta en 30 el número de especies registradas para el Parque, sin embargo este número podría

aumentar una vez que se termine la revisión taxonómica de todos los organismos colectados. Además de registrarse cuatro nuevos registros para el país, lo que pone de manifiesto la necesidad de seguir realizando investigaciones ictiológicas en esta región del país. Este trabajo enriquecerá el conocimiento que se tiene de las especies de peces en los arrecifes del Caribe mexicano en beneficio del manejo del Área Natural Protegida "Arrecifes de Puerto Morelos".

INTRODUCCION

Los sistemas marinos, dulceacuícolas y estuarinos en el Caribe mantienen una riqueza y variabilidad ictiológica con una amplitud de escalas espaciales, temporales y de organización. Si bien es invaluable la función ecológica que juegan dichos sistemas para el mantenimiento de desarrollos turísticos como los de Cancún e Isla Mujeres, también es notorio el alarmante incremento en la degradación ambiental de la zona. Por ejemplo, la pesca se ha intensificado sobre las especies depredadoras y herbívoras en muchas zonas (Arias-González, 1998; Núñez-Lara et al., 2003; Arias-González et al., 2004), lo que ha generado un efecto de cascada y crecimiento masivo de algas en ambientes marinos, las cuales compiten ventajosamente por el espacio con los corales y otras especies bénticas (Jackson et al., 2001). Lo anterior ha propiciado cambios en las especies dominantes y modificación de las redes tróficas (Jackson et al., 2001). La acidificación de los océanos, o la introducción y el efecto de especies invasoras magnifican el daño sobre los ecosistemas. Por lo que estudios formales enfocados a determinar la importancia de los procesos locales y regionales, su valoración, así como el establecimiento de mecanismos de conservación, adquieren relevancia vital. En este sentido es de especial importancia contar con estudios básicos de sistemática y taxonomía en zonas prioritarias del Caribe mexicano, que nos ayude a tener una visión amplia de las especies de peces que habitan los humedales de esta zona y con ello sentar las bases para estudios de monitoreo posteriores tendientes a su conservación y manejo.

ANTECEDENTES

En México, las primeras recolecciones científicas de peces se remontan al siglo pasado (Evermann y Goldsborough, 1902). En los años 50 y 60 el Instituto Nacional de Pesca continuó con las recolecciones, especialmente con censos sobre especies de interés comercial. Los posteriores estudios de la fauna íctica han sido cualitativos (Hildebrand et al., 1964; Chávez 1966; Reséndez-Medina, 1979), los trabajos en las últimas tres décadas, de igual forma son en su mayoría cualitativos y descriptivos, y abordan de manera general aspectos de ecología y distribución de los peces recolectados (Herrera-Silveira, 1994;). Sobre sistemas lagunares costeros mexicanos, Reséndez Medina, 1975, Contreras (1985) y Yañez-Arancibia et al. (1993) son algunos de los pocos autores con trabajos realizados, básicamente sobre ictiología y descripción física general de los sistemas lagunares costeros del país y que permiten tener un panorama de las condiciones hidrológicas de dichos sistemas. Greenfield y Thomerson (1997), realizan un catálogo de peces de agua continentales del Caribe dando a conocer características de historia de vida, morfología y selección del hábitat de las principales especies de peces dulceacuícolas y estuarinas. Castro-Aguirre et al. (1999) elaboraron un catálogo de peces marinos que penetran a cuerpos de aguas interiores. En lo referente a la importancia ecológica de la vegetación sumergida y circundante para las especies marinas y de sistemas lagunares, así como estudios comparativos de las comunidades habitantes en sitios con vegetación y desprovistos de ella en general, se conocen los trabajos de Yáñez-Arancibia et al. (1993), Boesch y Turner (1984), Blaber et al, (1992), West y King (1996). Thayer et al. (1987), Álvarez-Guillén et al. (1986), Deegan et al. (1986), Yánez-Arancibia et al. (1988), Mumby et al. (2004), Caballero-Vázquez et al. (2005) y Caballero-Vázquez y Vega-Cendejas (2012) entre otros, donde han estudiado aspectos relacionados con el uso del hábitat y la función de los ecosistemas.

Para el estado de Quintana Roo, Espejel-Montes et al. (1983) señalaron la falta de esfuerzos formales para la elaboración de un inventario de peces marinos. A partir de la década pasada, los trabajos como el de Vásquez-Yeomans (1992), Díaz-Ruiz y Aguirre-León (1993), Schmitter-Soto et al. (2000) y Caballero-Vázquez y

Vega-Cendejas (2012), entre otros, revierten esta situación al estudiar estos sistemas acuáticos y su composición ictiológica.

En la zona norte de Quintana Roo, Reséndez-Medina (1975, 1979) proporcionó las primeras listas de peces en lagunas costeras en el norte de Quintana Roo, y caracterizó las principales lagunas costeras del Golfo y mar Caribe, Jordán et al. (1978), realizaron una prospección biológica en el sistema lagunar Nichupté-Bojórquez. CIQRO (1980) realizó una investigación sistemática sobre la ictiofauna de los cuerpos de agua continentales de Quintana Roo y Yucatán, con el objetivo de elaborar listas de los recursos con los que contaban los cuerpos de agua.

Álvarez-Guillén et al. (1986) presentaron resultados similares sobre una prospección ictiológica en la zona de pastos marinos de la laguna arrecifal de Puerto Morelos. Navarro et al. (1986) realizo un inventario de peces en los cuerpos de agua de la porción costera sur y central del estado; Navarro y Valdés (1990) documentaron las especies de peces en peligro de extinción de la Península de Yucatán.

Se tiene información además de los datos periféricos de las investigaciones del International Coral Reef sobre sistemas arrecifales cercanos a estos cuerpos de agua, y el registro de algunos peces por parte de la Universidad de Quintana Roo, (Universidad de Quintana Roo, 1999). La mayoría de las investigaciones ecológicas realizadas en la costa centro y sur del Caribe mexicano, se han concentrado en la dinámica poblacional y en la estructura comunitaria de sus especies, destacando los trabajos de Núñez-Lara (1998); Núñez-Lara (2003); Odum y Odum (1955), Polovina (1984), Sorokin (1990), Opitz (1991), Arias-González (1993), Vega-Cendejas (1994, 1998, 2001), McClanahan (1995), Arias-González et al. (1997), Arancibia y Neira (2003), Álvarez-Hernández (2003), Vidal y Basurto (2003), Arias-González et al. (2004) son los principales autores con estudios sobre funcionamiento y estructuras tróficas en zonas del Caribe y en otras regiones.

Álvarez-Cadena et al (2007) reportaron las especies de peces en estadio larvario de 12 localidades de la parte litoral arrecifal del norte de Quintana Roo, registrando 55 familias y 115 taxa para esa zona. García-Hernández et al (2009)

presentan un listado de estadios larvarios y juveniles en la laguna de Yalahau, Ría Lagartos, Celestún y Chelem. El listado incluye 39 nuevos registros para la región. Por su parte, Schmitter-Soto (1998) efectuó recolectas en la laguna de Chacmuchuch, para la realización de un inventario de los peces continentales de Quintana Roo. Schmitter-Soto et al. (2000) presentaron un listado de los peces marinos del Caribe mexicano y reportaron 577 especies que incluyen las especias *Rhinobatos percellenes, Myctophum affine, M. asperum, Cregmaceros mcclellandii, Cypcelurus malanurus, Eucinostomus havana, Bobiexos pucntulatus y Sphyraena guachanch*o como nuevos reportes para la zona, sin embargo, por la naturaleza misma del trabajo no incluye lagunas costeras.

En el 2000 se publicó el Programa de manejo del Parque Nacional Arrecife de Puerto Morelos por parte del Instituto Nacional de Ecología/ SEMARNAT, siendo este un marco normativo con el objetivo de proteger, conservar y aprovechar sustentablemente los recursos. En este programa se presenta un exhaustivo proceso de consulta y consenso entre los diferentes actores involucrados en el Parque Nacional y principalmente de la Comunidad de Puerto Morelos. Se incluyen especies de flora y fauna. En cuanto a los peces se incluyen 224 especies pertenecientes a las clases Chondrichthyes y Actinopterygii, tomados de: Álvarez-Guillen H. et al. (1986), Pérez-Espinosa (1993), Negrete y Lozano (com. pers.).

OBJETIVOS

General:

Realizar un inventario ictiofaunístico de las especies de las clases Chondrichtyes y Acthinopterygii presentes en los ecosistemas arrecifales, pelágicos, dulceacuícolas y estuarinos de Puerto Morelos, Quintana Roo.

Particulares:

- Obtener una base de datos en el sistema informático BIOTICA 5 con al menos 1000 registros de aproximadamente 250 especies de peces que se distribuyen en los humedales de Puerto Morelos. Quintana Roo.

- Incorporar los organismos colectados en la colección Ictiológica de la Universidad Michoacana de San Nicolás de Hidalgo (CPUM), En la Colección de Peces del Colegio de la Frontera Sur Unidad Chetumal y de la Unidad de Ciencias el Agua (CP-UCIA).
- Obtener fotografías y videotransectos de los organismos in situ y colectados.

METODOLOGÍA

Colecta de organismos.

Para la colecta de peces arrecifales se utilizó buceo autónomo SCUBA y buceo libre. La colecta se realizó con arpones de liga para peces de talla mediana. Los peces crípticos fueron adormecidos con aceite de clavo diluido en alcohol y colectados con jeringas de succión. El mismo método de peces crípticos se utilizó para la zona intermareal rocosa (pozas de marea). Esta esencia aletarga a los peces y facilita su captura. Para el acopio de los organismos colectados se utilizaron bolsas y botes colectores especiales para almacenamiento de peces arrecifales.

Para las zonas arenosas poco profundas se utilizó un chinchorro de 20 metros de largo, 2 metros de caída y 0.5 pulgadas de abertura de maya, red agallera de 20 metros y 1 pulgada de abertura de malla, así como dos atarrayas de 2 metros de diámetro y abertura de malla de 0.5 pulgadas.

Para los organismos estuarinos y dulceacuícolas se utilizaron redes tipo chinchorro de 3 metros de largo, 1 de caída y 0.25 pulgadas de abertura de malla, así como las atarrayas antes descritas.

Finalmente, para especies pelágicas y/o comerciales se contó con la ayuda de las cooperativas pesqueras para el registro de la captura incidental. Para la correcta identificación de los sitios de colecta, se incluyó un miembro del equipo investigador en las salidas realizadas por los pescadores.

Toma de fotografías y video

Se utilizó equipo de buceo autónomo haciéndose inmersiones diurnas y nocturnas en la laguna, zonas arrecifales y de manglar. Las fotografías permitieron documentar la diversidad de peces de la zona de estudio y sirvieron de apoyo para

la determinación de algunas especies que son fácilmente identificables a partir de coloración y forma. De igual manera se fotografiaron los humedales para representar el tipo de vegetación de los sitios de cenote y manglar en donde se realizaron las colectas. También se tomaron fotografías de los organismos colectados con una cámara Sony Cybershot de 16.2 megapixeles, esto con la finalidad de tener un acervo fotográfico de las especies colectadas en los diferentes ecosistemas. Para la toma de fotografía los organismos son preparados para representar la forma y coloración original.

Procesado de muestras

En la medida de lo posible se realizó la identificación de los organismos en fresco. Todos los organismos colectados fueron fijados en formol al 10% o al 5%. Posteriormente fueron transportados al laboratorio para su curación y preservación en alcohol al 70%. En laboratorio se realizó la corroboración de la identificación realizada previamente en campo. Para dicha identificación se hizo uso de la bibliografía especializada y manuales de campo tales como; Guitart, (1977); Randall, (1983); Humann et al. (2003), FAO (1995), Schmitter-Soto, (1998); Castro-Aguirre et al. (1999) y Robertson et al. (2015).

ÁREA DE ESTUDIO

Localización Geográfica

Puerto Morelos es una población costera que se localiza frente al Mar Caribe en México. El poblado se localiza geográficamente en la costa nororiental del estado de Quintana Roo, a 35 km al sur de Cancún y 34 km al norte de Playa del Carmen sobre la costa (Carabias-Lillo, 2000).

Fisiografía

La zona costera se caracteriza por presentar un relieve muy escaso y por la ausencia de ríos superficiales, resultado de la naturaleza kárstica del terreno. Está delimitada hacia la parte terrestre por bermas del Pleistoceno de aproximadamente 10 m de altura, y hacia el mar por una barra arenosa de 2-3 m de altura y 100-200 m de ancho que constituye la línea de costa actual (Carabias-Lillo, 2000). Entre estos dos rasgos hay depresiones que dan lugar a un ambiente

lagunar somero, con esporádico contacto con el mar adyacente. Estas cuencas están interrumpidas por caminos transversales que la dividen de forma no natural, restringiendo o impidiendo el flujo de agua (Carabias-Lillo, 2000). A lo largo de los bordes de las lagunas existen cinturones angostos de *Rhizophora mangle*, así como algunos parches aislados de las partes centrales de las cuencas, predominando una diversa vegetación de humedales en el resto del área (Carabias-Lillo, 2000).

Hidrología

Por la naturaleza kárstica y la escasez de suelos, el agua de lluvia se filtra rápidamente a través de la roca calcárea hacia el acuífero, por lo que el drenaje es básicamente subterráneo. La acumulación de aguas pluviales en la matriz rocosa de la península, ocasiona una diferencia de niveles hidrostáticos que determina un flujo subterráneo de tierra al mar (Carabias-Lillo, 2000). El promedio anual de descarga de agua subterránea en la Península de Yucatán, por encima de los 20° de Latitud Norte, se ha estimado en 8.6 millones de m3 por km de costa al año. Sin embargo, por la escasez de sólidos en suspensión la influencia terrígena sobre el arrecife es mínima (Carabias-Lillo, 2000).

Clima

El clima es cálido sub-húmedo con una temperatura promedio anual de 26.3 °C, un máximo en el verano de 35.5 °C y un mínimo en invierno de 13 °C (Merino y Otero, 1991). De acuerdo con las cartas climáticas oficiales el clima en la región es cálido, subhúmedo con temporadas de lluvia marcadas; corresponde a un clima intermedio entre los tipos Aw1(x')(i')g y el Aw2"(i) (Carabias-Lillo, 2000). El periodo de vientos alisios dominantes es entre febrero y julio, a ese periodo le sigue una época de transición entre julio y septiembre, para dar lugar a la época de "nortes" que domina en los meses de Octubre a Enero. La época de huracanes para el Océano Atlántico es del 1° de Junio al 30 de Noviembre, sin embargo los Meses de mayor incidencia son Agosto, Septiembre y Octubre (Carabias-Lillo, 2000).

Corrientes

La determinante oceánica principal en el área es el ramal de la corriente de Yucatán, que fluye paralela al borde de la plataforma continental en dirección al Norte. Merino (1992) sugiere un sistema de contracorrientes profundo a lo largo del talud, que puede provocar invasiones de agua profunda en el sistema arrecifal. Medidas del flujo hacia el norte, en el Estrecho de Yucatán, indican velocidades máximas de 4-5 nudos (Carabias-Lillo, 2000). La dirección e intensidad de la corriente cambia con las temporadas. En la laguna arrecifal la circulación es principalmente paralela a la costa, con velocidades de aproximadamente 10cm/s, que pueden alcanzar valores superiores a los 50cm/s en las aberturas ("bocanas") que se forman en la barrera arrecifal o entre ésta y la playa (Carabias-Lillo, 2000). Esta corriente cambia en velocidad y dirección, debido a una combinación de variables, la influencia de la corriente de Yucatán, el viento y el romper de las olas sobre el arrecife (Carabias-Lillo, 2000).

Oleaje

Durante la mayor parte del año los arrecifes del parque nacional están expuestos a olas generadas por los vientos alisios. Durante la época de nortes el conjunto de vientos NNO y SE genera un oleaje considerable de dirección contrastante (Carabias-Lillo, 2000). En la laguna arrecifal las olas son bajas ya que la barrera arrecifal funciona como un eficiente disipador de la energía del oleaje; se estima una altura de 0.14 m en la zona de playa y un periodo de aproximadamente 2 segundos. En las zonas en las que la barrera arrecifal es más profunda las olas pueden ser de mayor altura. No existen datos para la altura del oleaje normal en el océano abierto (Carabias-Lillo, 2000).

Zona arrecifal

El perfil de arrecife que se presenta en casi todo el estado de Quintana Roo, se le conoce como del tipo "bordeante" con tres variaciones: a) un canal bien definido entre la costa y la cresta arrecifal, b) con un canal incipiente y c) sin canal. De esta forma del litoral hacia mar abierto, sobre el eje morfológico, se presentan tres zonas estructurales: La laguna arrecifal que se forma sobre el canal, la cresta arrecifal que es la parte más somera del arrecife, y el arrecife frontal, que es la parte más profunda (Carabias-Lillo, 2000).

La región conocida como Arrecife de Puerto Morelos forma parte de la barrera arrecifal denominada "Gran Cinturón de Arrecifes del Atlántico Occidental",

también conocida como "Gran Arrecife Maya", y pertenece al "Sistema Arrecifal Mesoamericano", considerada como la segunda barrera arrecifal más grande del mundo. Se ubica en la Costa del municipio de Benito Juárez, frente al poblado de Puerto Morelos en el estado de Quintana Roo, con una superficie total de 9,066-63 hectáreas. Sus coordenadas geográficas extremas son: 21°00'00" y 20°48'33" LN y 86°53'14.40" y 86°46'38.94" LW (Carabias-Lillo, 2000).

El arrecife es una barrera de tipo bordeante extendido con poca acreción del Holoceno; la estructura basal ha sido determinada principalmente por eventos del Pleistoceno medio y tardío. El desarrollo de los arrecifes incluidos dentro del parque nacional es variable, pudiéndose diferenciar en la barrera diversos sectores, siendo el más homogéneo el que se encuentra entre Puerto Morelos y Punta Tanchacté (Carabias-Lillo, 2000). Entre Punta Tanchacté y la Bonanza se encuentra una serie de pequeños bajos sucesivos separados entre sí hasta por 900 m; algunos de estos bajos son más profundos que otros dando la impresión de que no existe arrecife en algunos sitios (Carabias-Lillo, 2000). Entre la Bonanza y Punta Nizuc vuelve a haber secciones arrecifales grandes, del orden de kilómetros, separadas por canales de 200 a 300 m. Al Sur de Puerto Morelos, la formación superficial desaparece por completo y no vuelve a encontrarse hasta Punta Maroma, 16 km al sur de la localidad anterior (Carabias-Lillo, 2000).

Tomando en cuenta la topografía del fondo y las características bióticas, se divide el perfil de la barrera arrecifal en seis zonas: orilla, laguna, arrecife Oeste o posterior, cresta arrecifal (o rompiente arrecifal), arrecife Este o frontal y plataforma arenosa; aunque la amplitud y complejidad de esta zonación puede ser relativamente variable entre los arrecifes que conforman el parque nacional (Carabias-Lillo, 2000).

Vegetación marina

Para la zona marina del Parque Nacional, se han reportado tres especies de pastos marinos, 264 especies de algas y 7 especies de dinoflagelados simbiontes, las especies de vegetación bien desarrolladas que dominan son *Thalassia testudinum, Syringodium filiforme, Penicillus capitatus* y *Rhipocephalus phoenix* (Carabias-Lillo, 2000).

Fauna Marina

En términos del número y composición de especies, los arrecifes de Puerto Morelos son tan ricos como los de cualquier otro sistema arrecifal de la región biogeográfica del Caribe. A la fecha existen registros y observaciones de 669 especies de fauna marina, tanto invertebrados como vertebrados, pertenecientes a 75 órdenes (Carabias-Lillo, 2000).

RESULTADOS

Se realizaron diversas salidas de campo programadas de Octubre del 2014 a Mayo del 2015, en diferentes puntos de Puerto Morelos, municipio de Benito Juárez, Quintana Roo, incluyendo el mayor número de sitios posibles que abarcaran el polígono de estudio (Fig. 1). Debido a las actividades turísticas de la Riviera Maya, muchos de los accesos a cenotes, zonas de manglar y áreas costeras se encuentran restringidos por la iniciativa privada, por lo que algunas zonas fueron de difícil acceso.

Base de datos

Se incorporaron 1015 registros a la base de datos en el programa BIOTICA 5.0, de acuerdo con el "Instructivo para la conformación de bases de datos de inventarios biológicos compatibles con el Sistema Nacional de Información sobre Biodiversidad, 2013", (documento anexo).

Dicha base consta de 1528 organismos pertenecientes a 254 especies de 135 géneros, 66 familias y 19 órdenes (Anexo 1). Colectados en profundidades que van de 1 a 26 metros, y 11 ambientes (arrecife coralino, arrecife rocoso, arrecife artificial, cabezas de coral, arenal, pastos marinos, zona pelágica/mar abierto, manglar, laguna artificial, cenote e intermareal rocoso, Fig. 2 y Anexo 3), en 55 localidades (Anexo 2). Se tomaron un total de 210 fotografías de ejemplares, 60 de los humedales y se realizaron 10 videotransectos que fueron entregados a la CONABIO.

De los registros ingresados en la base de BIOTICA 5.0, 23 corresponden a cinco especies dulceacuícolas, colectados en nueve sitios, mientras que las 231 especies restantes son marinas, colectadas en 46 sitios.

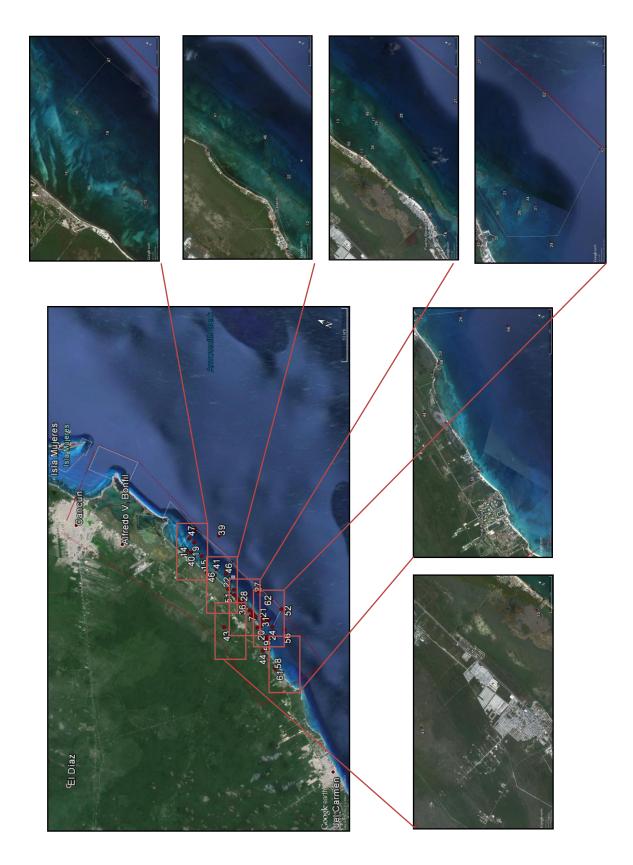


Figura 1. Sitios de colecta en los humedales de Puerto Morelos, Quintana Roo.

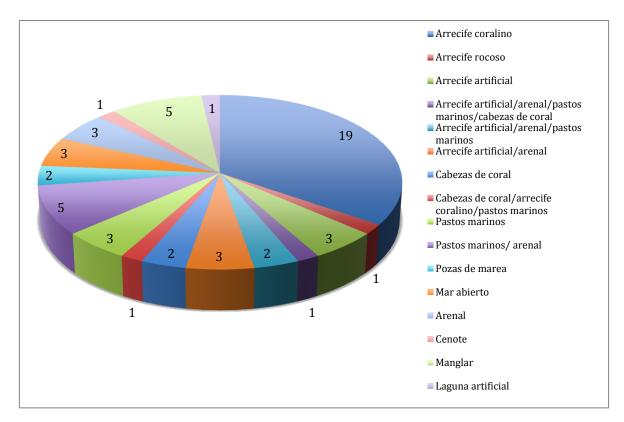


Figura 2. Número de localidades muestreadas que pertenecen a cada ambiente.

Sistema de clasificación de humedales

Se tomaron fotografías de 40 de los 55 sitios de recolecta de acuerdo a los lineamientos establecidos en el Anexo 3 del convenio, las cuales fueron entregadas a la CONABIO, los 15 sitios faltantes carecen de fotografía debido a que las recolectas fueron nocturnas y la falta de luz impidió la toma adecuada de dichas fotografías o bien a que los sitios de recolecta fueron en ambientes pelágicos. El sistema de clasificación de humedales para 51 sitios se presenta en el anexo 2.

Especies registradas

De las especies ingresadas en la base de datos en el programa BIOTICA 5.0, las familias con mayor número de especies fueron Haemulidae, Gobiidae y Serranidae con 16 especies cada una (Fig. 3). Los géneros más representativos fueron *Haemulon* (Haemulidae) con 13 especies, *Lutjanus* (Lutjanidae) con siete especies, mientras que los géneros *Eucinostomus* (Gerridae), *Malacoctenus*

(Labrisomidae), *Sparisoma* (Scaridae) y *Stegastes* (Pomacentridae) fueron representados por seis especies cada uno.

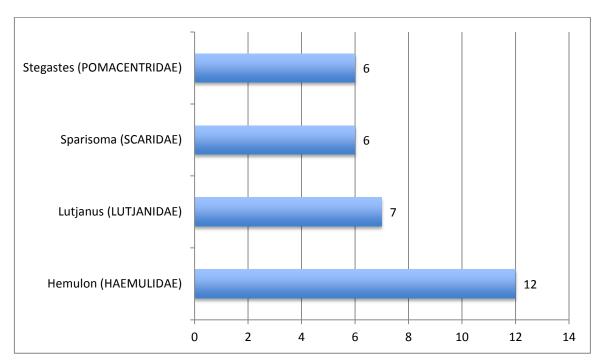


Figura 3. Se muestran las cuatro familias con los géneros más representativos

Del total de las especies, 15 son capturadas con fines comerciales como son Balistes vetula, Cephalopholis fulva, Epinephelus guttatus, Epinephelus striatus, Haemulon plumierii, Haemulon sciurus, Lachnolaimus maximus, Lutjanus analis, Lutjanus griseus, Lutjanus jocu, Mycteroperca bonaci, Mycteroperca interstitialis, Mycteroperca venenosa, Seriola rivoliana y Pterois volitans. Mientras que se tienen a Narcine bancroftii, Pteorois volitans, Scorpaena plumieri y Urobatis jamaicensis como especies de importancia médica (Fig. 4).

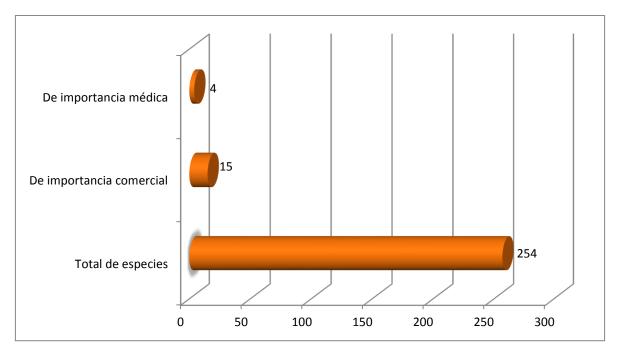


Figura 4. Aprovechamiento e importancia de las especies.

DISCUSIÓN

Durante el desarrollo del proyecto se generó información relevante en torno a la ictiofauna del Parque nacional Arrecifes de Puerto Morelos. El presente listado aumenta en 30 el número de especies registradas para el Parque, sin embargo este número podría aumentar una vez que se termine la revisión taxonómica de todos los organismos colectados. Se recolectaron al menos cuatro nuevos registros para el país, tres de ellos, Apogon robbyi, Sanopus astrifer y Coryphopterus tortugae, recolectados y depositado en la Colección Ictiológica de la Universidad Michoacana y otro más, Hypsoblennius exstochilus, registrado mediante fotografía, este último registro ya fue aceptado para su publicación en la Revista Mexicana de Biodiversidad. Actualmente se está trabajando en la corroboración genética de otros cinco posibles nuevos registros para el país. Por lo que, a pesar del importante número de investigaciones que se han realizado en torno a la ictiofauna de los arrecifes del Caribe, estos descubrimientos denotan la necesidad de seguir realizando investigaciones ictiológicas en esta región del país. A pesar del alto número de especies con potencial de aprovechamiento que se registraron en el área de estudio, el aprovechamiento comercial se encuentra

reducido a solo 15 especies, además de otras tres que son de importancia para la pesca deportiva.

Como parte del proyecto se están desarrollando tres tesis de licenciatura. De las cuales se espera la publicación de artículos en revistas científicas. Este trabajo enriquecerá el conocimiento que se tiene de las especies de peces en los arrecifes del Caribe mexicano en beneficio del manejo del Área Natural Protegida "Arrecifes de Puerto Morelos".

CONCLUSIONES

Se aumentó de 224 a 254 el número de especies registradas para los humedales del Parque Nacional Arrecifes de Puerto Morelos.

Se encontraron cuatro nuevos registros confirmados para el Caribe mexicano El aprovechamiento de las especies ícticas es bajo, con solo 15 especies capturadas comercialmente.

Es necesario seguir realizando investigaciones taxonómicas básicas en relación a la ictiofauna del Caribe mexicano.

BIBLIOGRAFÍA

- -Álvarez-Cadena, J. N., Ordóñez-López, U., Valdés-Lozano, D., Almaral-Mendívil, A. R., & Uicab-Sabido, A. (2007). Estudio anual del zooplancton: composición, abundancia, biomasa e hidrología del norte de Quintana Roo, mar Caribe de México. *Revista mexicana de biodiversidad*, 78(2), 421-430.
- -Álvarez-Guillén, H., García-Abad, M. D. L. C., Tapia-García, G., & Yañez-Arancibia, A. (1986). Prospección ictioecológica en la zona de pastos marinos de la laguna arrecifal en Puerto Morelos, Quintana Roo, verano 1984.
- -Álvarez-Hernández, J. H. (2003). Trophic Model of a Fringing Coral Reef in the Southern Mexican Caribbean [Modelo Trófico para un Arrecife de Coral de Tipo Borde-Barrera en. *Fisheries Centre Research Reports*, *11*(6), 227.
- -Arancibia, H., & Neira, S. (2003). Simulación de cambios en la biomasa de los principales recursos pesqueros de Chile central (V–IX región) bajo el marco de la

- ley de pesca N 19.713 y sus posteriores modificaciones. *Informe Final. Universidad de Concepción*.
- -Arias-González, J. E. (1998). Trophic models of protected and unprotected coral reef ecosystems in the South of the Mexican Caribbean. *Journal of Fish Biology*, *53*(sA), 236-255.
- -Arias-González, J. E., Núñez-Lara, E., González-Salas, C., & Galzin, R. (2004). Trophic models for investigation of fishing effect on coral reef ecosystems. *Ecological Modelling*, *172*(2), 197-212.
- -Blaber, S. J. M., Brewer, D. T., Salini, J. P., Kerr, J. D., & Conacher, C. (1992). Species composition and biomasses of fishes in tropical seagrasses at Groote Eylandt, Northern Australia. *Estuarine, Coastal and Shelf Science*, *35*(6), 605-620.
- -Boesch, D. F., & Turner, R. E. (1984). Dependence of fishery species on salt marshes: the role of food and refuge. *Estuaries*, 7(4), 460-468.
- -Caballero-Vázquez, J. A., Gamboa-Pérez, H. C., & Schmitter-Soto, J. J. (2005). Composition and spatio-temporal variation of the fish community in the Chacmochuch Lagoon system, Quintana Roo, Mexico Composición y variación espacio-temporal de la comunidad de peces en el Sistema Lagunar Chacmochuch, Quintana Roo, México. *Hidrobiológica*, *15*(2), 215-225.
- -Caballero-Vázquez, J. A., & Vega-Cendejas, M. E. (2012). Spatial patterns of diversity at local and regional scales in a tropical lagoon. *Neotropical Ichthyology*, 10(1), 99-108.
- -Carabias-Lillo, J. (2000). Programa de Manejo Parque Nacional Arrecife Puerto Morelos. México D.F.: Instituto Nacional de Ecología.
- -Chávez, H. (1966). Peces colectados en el arrecife Triángulos Oeste y en cayo Arenas, Sonda de Campeche, México.
- -Castro-Aguirre, J. L. (1999). *Ictiofauna estuarino-lagunar y vicaria de México*. Editorial Limusa.
- -Contreras, F. (1985). Las lagunas costeras mexicanas (No. 551.48 C6).
- -Deegan, L. A., Day Jr, J. W., Gosselink, J. G., Yáñez-Arancibia, A., Chavez, G. S., & Sanchez-Gil, P. (1986). Relationships among physical characteristics, vegetation distribution and fisheries yield in Gulf of Mexico estuaries.

- -Díaz-Ruiz, S., & Aguirre-León, A. (1993). Diversidad e ictiofauna de los arrecifes del sur de Cozumel, Quintana Roo. *Biodiversidad Marina y Costera de México, SI Salazar-Vallejo and NE González (eds.). Comisión Nacional para el Conocimiento y el Aprovechamiento de la Biodiversidad y el Centro de Investigaciones Científicas de Quintana Roo, México, 817-832.*
- -Evermann, B. W., & Goldsborough, E. L. (1902). *Notes on the fishes and mollusks of Lake Chautauqua, New York* (Vol. 483). US Government Printing Office.
- -Fischer, W. K., Schneider, F., Sommer, W., Carpenter, C., & KE Niem, V. H. (1995). *Guía FAO para la identificación de especies para los fines de la pesca:* pacífico centro-oriental (No. R SH138 F52).
- -García-Hernández, V., Ordóñez-López, U., Hernández-Vázquez, T., & Álvarez-Cadena, J. (2009). Fish larvae and juveniles checklist (Pisces) from the northern Yucatán Peninsula, Mexico, with 39 new records for the region. *Revista Mexicana de Biodiversidad*, *80*(1), 85-94.
- -Greenfield, D. W., & Thomerson, J. E. (1997). Fishes of the continental waters of Belize. University Press of Florida.
- -Guitart, D. J., & de Cuba, A. D. C. (1977). Sinopsis de los peces marinos de Cuba. V. 3: Orden Perciformes; Suborden Percoidei.-v. 4: Ordenes: Perciformes (Subordenes: Blennoidei, Ophidioidei, Callionymoidei, Acanthuroidei, Trichiuroidei, Scombroidei, Stromateoidei, Gobioidei, Cottoidei); Dactylopteriformes; Pleuronectiformes; Echeneiformes, Tetraodontiformes; Gobiesociformes; Batrachoidiformes; Lophiiformes.
- -Hildebrand, H. H., Chavez, H., & Compton, H. (1964). Aporte al conocimiento de los peces del arrecife Alacranes, Yucatán (México).
- Humann, P. D., N. P. Humann & N. DeLoach. (2003). Reef fish identification: Florida, Caribbean, Bahamas. 4th edition. Jacksonville, Florida, 481 pp.
- -Jackson, J. B., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., & Hughes, T. P. (2001). Historical overfishing and the recent collapse of coastal ecosystems. *science*, *293*(5530), 629-637.

- -Jordán E., M. Angot y R. Torre. (1978). Prospección biológica de la Laguna de Nichupté, Cancún, Q. Roo, México. Anales del Instituto de Ciencias del Mar y Limnologia. UNAM, México, 51: 179-188.
- -McClanahan, T. R. (1995). A coral reef ecosystem-fisheries model: impacts of fishing intensity and catch selection on reef structure and processes. *Ecological Modelling*, *80*(1), 1-19.
- -Montes, E., Cano, J. J. G., Sáenz, J. G., & Sáenz, C. G. (1983). *Análisis de la distribución y la abundancia del genero cyphoma (gasteropoda: ovulidae) en el arrecife de Puerto Morelos, Quintana Roo* (No. TQ/594.3 E6).
- -Mumby, P. J., Edwards, A. J., Arias-González, J. E., Lindeman, K. C., Blackwell, P. G., Gall, A., M. I. Gorczynska, A. R. Harborne, C. L. Pescod, H. Renken, C. C. Wabnitz & G. Llewellyn (2004). Mangroves enhance the biomass of coral reef fish communities in the Caribbean. *Nature*, *427*(6974), 533-536.
- -Navarro-Mendoza, M., & Valdés-Casillas, C. (1990). Peces cavernícolas de la península de Yucatán en peligro de extinción, con nuevos registros para Quintana Roo. Áreas Naturales Protegidas en México y Especies en Extinción. ENEP-Iztacala, UNAM, México, 218-241.
- Navarro-Mendoza, M., C. Valdéz, A. Gómez-Pedroso, M. Pamplona-Salazar y G. Goméz-Nieto. (1986). Inventario y estudios bioecológicos de la ictiofauna marina y dulceacuícola en la reserva de Sian Ka'an, Quintana Roo, México. Parte I. Informe técnico, United States Fish and Wildlife Service/Centro de Investigaciones de Quintana Roo, Chetumal.
- -Núñez-Lara, E., & Arias-González, J. E. (1998). Composición, biomasa y estructura trófica de la comunidad de peces arrecifales en tres áreas del sur del Caribe mexicano. In *Proceedings of the 50th Gulf and Caribbean Fisheries Institute* (Vol. 1, pp. 1003-1021).
- -Núñez-Lara, E., González-Salas, C., Ruiz-Zarate, M. A., Hernández-Landa, & Ernesto Arias-González, J. (2003). Condition of coral reef ecosystems in central-southern Quintana Roo(Part 2: Reef fish communities). *Atoll Research Bulletin*, 496, 338-359.

- -Odum, H. T., & Odum, E. P. (1955). Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. *Ecological Monographs*, *25*(3), 291-320.
- Pérez Espinosa, P. (1993). Estudio preliminar sobre la depredación de postlarvas y primeros estadios juveniles de la langosta espinosa *Panulirus argus* (Latreille, 1804) en la región de Puerto Morelos, Q. R. Reporte de Servicio Social para obtener el título de Biólogo Universidad Autónoma Metropolitana-Xochimilco.
 México. 40 p
- .-Polovina, J. J. (1984). Model of a coral reef ecosystem. *Coral reefs*, 3(1), 1-11.
- -Randall, J. E. J. E. (1983). Caribbean reef fishes (No. C/597.0923 R3).
- -Reséndez-Medina, A. (1975). Lista preliminar de peces colectados en las lagunas de Nichupté y Bojórquez, Cancún, Quintana Roo, México. In *Anales del Instituto de Biología UNAM, Serie Zoológica* (Vol. 46, pp. 87-100).
- -Reséndez-Medina, A. (1979). Estudios ictiofaunísticos en lagunas costeras del Golfo de México y Mar Caribe, entre 1966 y 1978. An. Inst. Biol., UNAM, Ser. Zool., 50 (1): 633-646. *José Luis Castro-Aguirre, Hector Espinosa-Perez y Juan Jacobo Schmitter-Soto*.
- Robertson D. R. y Gerald R. Allen. 2015. Peces Costeros del Pacífico Oriental Tropical: sistema de Información en línea. Versión 2.0 Instituto Smithsonian de Investigaciones Tropicales, Balboa, República de Panamá.
- -Ruíz-Zárate, M. A., Hernández-Landa, R. C., González-Salas, C. A. R. L. O. S., Núñez-Lara, E., & Ernesto Arias-González, J. (2003). Condition of coral reef ecosystems in central-southern Quintana Roo, Mexico(Part 1: Stony corals and algae). *Atoll Research Bulletin*, 496, 318-337.
- -Schmitter-Soto, J. J. (1998). *Catálogo de los peces continentales de Quintana Roo*. Chetumal, México: El Colegio de la Frontera Sur.
- -Schmitter-Soto, J. J., Vázquez-Yeomans, L., Aguilar Perera, A., Curiel Mondragón, C., & Caballero Vázquez, J. A. (2000). Lista de peces marinos del Caribe mexicano. *Anales del Instituto de Biología serie Zoología*, 71(002).
- -Sorokin, Y. I. (1990). Aspects of trophic relations, productivity and energy balance in coral-reef ecosystems. *Ecosystems of the world*, *25*, 401-418.

- Vásquez Yeomans, L. G. V., Yeomans, M. A. L. V., & Vera, M. A. G. (1992). *Peces marinos de las costas de Quintana Roo: un listado preliminar* (No. EQ/597.0920726 V3).
- -Thayer, G. W., Colby, D. R., & Hettler Jr, W. F. (1987). Utilization of the red mangrove prop root habitat. *Marine Ecology Progress Series*, *35*, 25-38.
- -Vega-Cendejas, M. E. (1998). Trama trófica de la comunidad nectónica asociada al ecosistema de manglar en el litoral norte de Yucatán (Doctoral dissertation, Tesis doctoral, Facultad de Ciencias, UNAM, México).
- -Vega-Cendejas, M. E., Hernández, M., & Arreguin-Sánchez, F. (1994). Trophic interrelations in a beach seine fishery from the northwestern coast of the Yucatan peninsula, Mexico. *Journal of Fish Biology*, *44*(4), 647-659.
- -Vega-Cendejas, M. E., & Arreguin-Sánchez, F. (2001). Energy fluxes in a mangrove ecosystem from a coastal lagoon in Yucatan Peninsula, Mexico. *Ecological Modelling*, 137(2), 119-133.
- -Vidal, L., & Basurto, M. (2003). A preliminary trophic model of Bahía de la Ascensión, Quintana Roo, Mexico [modelo trófico preliminar de Bahía Ascención, Quintana Roo, México]. *Fisheries Centre Research Reports*, *11*(6), 255.
- -West, R. J., & King, R. J. (1996). Marine, brackish, and freshwater fish communities in the vegetated and bare shallows of an Australian coastal river. *Estuaries*, *19*(1), 31-41.
- -Yáñez-Arancibia, A., Lara-Domínguez, A. L., & Day Jr, J. W. (1993). Interactions between mangrove and seagrass habitats mediated by estuarine nekton assemblages: coupling of primary and secondary production. *Hydrobiologia*, *264*(1), 1-12.
- -Yáñez-Arancibia, A., Sánchez-Gil, P., & Alejandro, Y. A. (1988). *Ecología de los recursos demersales marinos: fundamentos en costas tropicales* (No. Sirsi) (i9789684630505).

AGRADECIMIENTOS

A la Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), a la CONANP por permitirnos las facilidades dentro del Parque

Nacional Arrecifes de Puerto Morelos, a la Universidad Michoacana de San Nicolás de Hidalgo, el Centro de Investigaciones Científicas de Yucatán. A todas las personas que de una u otra forma colaboraron en la realización del presente proyecto. Directivos de la CONANP: capitanes Luis y Rodolfo; A la Sociedad Cooperativa Producción Pesquera Pescadores de Puerto Morelos: Don Cristóbal, Don Manuel, Melchor, Liborio, Marcos, Gaspar; capitán Sergio prestador de servicios turísticos.

ANEXOS

Anexo 1. Lista de especies identificadas e ingresadas en el programa BIOTICA 5.0.

0.0.			
	Especies	Familia	Orden
1	Abudefduf saxatilis	Pomacentridae	Perciformes
2	Acanthemblemaria aspera	Chaenopsidae	Perciformes
3	Acanthemblemaria spinosa	Chaenopsidae	Perciformes
4	Acanthemblemaria grenfieldi	Chaenopsidae	Perciformes
5	Acanthemblemaria maria	Chaenopsidae	Perciformes
6	Acanthostracion polygonius	Ostraciidae	Tetraodontiformes
7	Acanthurus bahianus	Acanthuridae	Perciformes
8	Acanthurus chirurgus	Acanthuridae	Perciformes
9	Acanthurus coeruleus	Acanthuridae	Perciformes
10	Albula vulpes	Albulidae	Albuliformes
11	Aulostomus maculatus	Aulostomatidae	Syngnathiformes
12	Alphestes afer	Serranidae	Perciformes
13	Aluterus scriptus	Monacanthidae	Tetraodontiformes
14	Amblycirrhitus pinos	Cirrithidae	Perciformes
15	Anarchopterus tectus	Syngnathidae	Syngnathiformes
16	Anchoa cayorum	Engraulidae	Clupeiformes
17	Anisotremus surinamensis	Haemulidae	Perciformes
18	Anisotremus virginicus	Haemulidae	Perciformes
19	Apogon maculatus	Apogonidae	Perciformes
20	Apogon quadriscuamatus	Apogonidae	Perciformes
21	Apogon townsendi	Apogonidae	Perciformes
22	Apogon robbyi	Apogonidae	Perciformes
23	Archosargus romboidalis	Sparidae	Perciformes
24	Astrapogon puncticulatus	Apogonidae	Perciformes
25	Balistes capriscus	Balistidae	Tetraodontiformes
26	Balistes vetula	Balistidae	Tetraodontiformes
27	Barbulifer antennatus	Gobiidae	Perciformes

28	Barbulifer ceuthoecus	Gobiidae	Perciformes
29	Belonesox belizanus	Poeciliidae	Cyprinodontiformes
30	Bodianus rufus	Labridae	Perciformes
31	Bothus lunatus	Bothidae	Pleuronectiformes
32	Bothus maculiferus	Bothidae	Pleuronectiformes
33	Bothus ocellatus	Bothidae	Pleuronectiformes
34	Calamus calamus	Sparidae	Perciformes
35	Calamus leucosteus	Sparidae	Perciformes
36	Calamus proridens	Sparidae	Perciformes
37	Callionymus bairdi	Callionymidae	Perciformes
38	Cantherhines pullus	Monacanthidae	Tetraodontiformes
39	Canthidermis sufflamen	Balistidae	Tetraodontiformes
40	Canthigaster rostrata	Tetraodontidae	Tetraodontiformes
41	Caranx bartolomei	Carangidae	Perciformes
42	Caranx crysos	Carangidae	Perciformes
43	Caranx latus	Carangidae	Perciformes
44	Caranx ruber	Carangidae	Perciformes
45	Centropomus undecimalis	Centropomidae	Perciformes
46	Cephalopholis cruentata	Serranidae	Perciformes
47	Cephalopholis fulva	Serranidae	Perciformes
48	Chaenopsis ocellata	Chaenopsidae	Perciformes
49	Chaenopsis roseola	Chaenopsidae	Perciformes
50	Chaetodipterus faber	Ephippidae	Perciformes
51	Chaetodon capistratus	Chaetodontidae	Perciformes
52	Chaetodon ocellatus	Chaetodontidae	Perciformes
53	Chaetodon striatus	Chaetodontidae	Perciformes
54	Chloroscombrus chrysurus	Carangidae	Perciformes
55	Chromys cyanea	Pomacentridae	Perciformes
56	Chromys insolata	Pomacentridae	Perciformes
57	Chromys multilineata	Pomacentridae	Perciformes
58	Cichlasoma urupthalmum	Cichlidae	Perciformes
59	Clepticus parrae	Labridae	Perciformes

60	Coryphopterus personatus	Gobiidae	Perciformes
61	Coryphopterus dicrus	Gobiidae	Perciformes
62	Coryphopterus eiodon	Gobiidae	Perciformes
63	Coryphopterus glaucofraenum	Gobiidae	Perciformes
64	Coryphopterus tortugae	Gobiidae	Perciformes
65	Cosmocampus brachycephalus	Syngnathidae	Syngnathiformes
66	Cosmocampus elucens	Syngnathidae	Syngnathiformes
67	Cryptotomus roseus	Scaridae	Perciformes
68	Ctenogobius saepepallens	Gobiidae	Perciformes
69	Dactylopterus volitans	Dactylopteridae	Scorpaeniformes
70	Decapterus macarellus	Carangidae	Perciformes
71	Decapterus punctatus	Carangidae	Perciformes
72	Diodon holocanthus	Diodontidae	Tetraodontiformes
73	Echenies naucrates	Echeneidae	Perciformes
74	Echidna catenata	Muranenidae	Anguilliformes
75	Elacatinus prochilos	Gobiidae	Perciformes
76	Elacatinus randalli	Gobiidae	Perciformes
77	Elops saurus	Elopidae	Elopiformes
78	Elops smithi	Elopidae	Elopiformes
79	Emmelichthyops atlanticus	Haemulidae	Perciformes
80	Entomacrodus nigricans	Blenniidae	Perciformes
81	Epinephelus guttatus	Serranidae	Perciformes
82	Epinephelus striatus	Serranidae	Perciformes
83	Eucinostomus gula	Gerridae	Perciformes
84	Eucinostomus argenteus	Gerridae	Perciformes
85	Eucinostomus jonesii	Gerridae	Perciformes
86	Eucinostomus lefroyi	Gerridae	Perciformes
87	Eucinostomus melanopterus	Gerridae	Perciformes
88	Fistularia tabacaria	Fistulariidae	Syngnathiformes
89	Gambusia yucatana	Poeciliidae	Cyprinodontiformes
90	Gerres cinereus	Gerridae	Perciformes
91	Gillellus uranidea	Dactyloscopidae	Perciformes

92	Ginglymostoma cirratum	Ginglymostomatidae	Orectolobiformes
93	Gnatholepis thompsoni	Gobiidae	Perciformes
94	Gramma loreto	Serranidae	Perciformes
95	Gymnothorax miliaris	Muranenidae	Anguilliformes
96	Gymnothorax moringa	Muranenidae	Anguilliformes
97	Gymnothorax vicinus	Muranenidae	Anguilliformes
98	Haemulon album	Haemulidae	Perciformes
99	Haelumon aurolineatum	Haemulidae	Perciformes
100	Haemulon bonariensi	Haemulidae	Perciformes
101	Haemulon carbonarium	Haemulidae	Perciformes
102	Haemulon chrysargyreum	Haemulidae	Perciformes
103	Haemulon flavolineatum	Haemulidae	Perciformes
104	Haemulon macrostomum	Haemulidae	Perciformes
105	Haemulon melanorum	Haemulidae	Perciformes
106	Haemulon parra	Haemulidae	Perciformes
107	Haemulon plumierii	Haemulidae	Perciformes
108	Haemulon sciurus	Haemulidae	Perciformes
109	Haemulon striatum	Haemulidae	Perciformes
110	Haemulon vittata	Haemulidae	Perciformes
111	Halichoeres bivittatus	Labridae	Perciformes
112	Halichoeres garnoti	Labridae	Perciformes
113	Halichoeres maculipinna	Labridae	Perciformes
114	Halichoeres poeyi	Labridae	Perciformes
115	Halichoeres radiatus	Labridae	Perciformes
116	Harengula humeralis	Clupeidae	Clupeiformes
117	Harengula jaguana	Clupeidae	Clupeiformes
118	Hemiramphus brasiliensis	Hemiramphidae	Beloniformes
119	Hemiramphus unifasciatus	Hemiramphidae	Beloniformes
120	Heteroconger longissimus	Congridae	Anguilliformes
121	Heteropriacanthus cruentatus	Priacanthidae	Perciformes
122	Hippocampus erectus	Syngnathidae	Syngnathiformes
123	Hippocampus reidi	Syngnathidae	Syngnathiformes

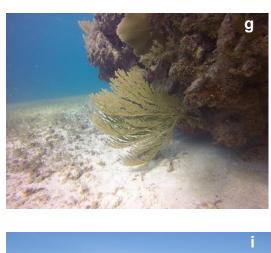
124	Hippocampus zosterae	Syngnathidae	Syngnathiformes
125	Hirundichthys speculiger	Exocoethidae	Beloniformes
126	Histrio histrio	Antennariidae	Lophiiformes
127	Holacanthus ciliaris	Pomacanthidae	Perciformes
128	Holacanthus tricolor	Pomacanthidae	Perciformes
129	Holacanthus bermudensis	Pomacanthidae	Perciformes
130	Holocentrus adscencionis	Holocentridae	Beryciformes
131	Holocentrus rufus	Holocentridae	Beryciformes
132	Hypoplectrus guttavarius	Serranidae	Perciformes
133	Hypoplectrus indigo	Serranidae	Perciformes
134	Hypoplectrus nigricans	Serranidae	Perciformes
135	Hypoplectrus puella	Serranidae	Perciformes
136	Hypoplectrus unicolor	Serranidae	Perciformes
137	Hyporhamphus unifasciatus	Hemiramphidae	Beloniformes
138	Kyphosus incisor	Kyphosidae	Perciformes
139	Kyphosus sectatrix	Kyphosidae	Perciformes
140	Labrisomus bucifferus	Labrisomidae	Perciformes
141	Labrisomus kalisherae	Labrisomidae	Perciformes
142	Labrisomus nuchipinnis	Labrisomidae	Perciformes
143	Lachnolaimus maximus	Labridae	Perciformes
144	Lactophrys bicaudalis	Ostraciidae	Tetraodontiformes
145	Lactophrys trigonus	Ostraciidae	Tetraodontiformes
146	Lactophrys triqueter	Ostraciidae	Tetraodontiformes
147	Lagocephalus laevigatus	Tetraodontidae	Tetraodontiformes
148	Lagodon romboides	Sparidae	Perciformes
149	Lobotes surinamensis	Lobotidae	Perciformes
150	Lutjanus analis	Lutjanidae	Perciformes
151	Lutjanus apodus	Lutjanidae	Perciformes
152	Lutjanus griseus	Lutjanidae	Perciformes
153	Lutjanus jocu	Lutjanidae	Perciformes
154	Lutjanus mahogoni	Lutjanidae	Perciformes
155	Lutjanus synagris	Lutjanidae	Perciformes

156	Lythrypnus nesiotes	Gobiidae	Perciformes
157	Lythrypnus okapia	Gobiidae	Perciformes
158	Malacanthus plumieri	Malacanthidae	Perciformes
159	Malacoctenus boehlkei	Labrisomidae	Perciformes
160	Malacoctenus erdmani	Labrisomidae	Perciformes
161	Malacoctenus gilli	Labrisomidae	Perciformes
162	Malacoctenus macropus	Labrisomidae	Perciformes
163	Malacoctenus triangulatus	Labrisomidae	Perciformes
164	Malacoctenus versicolor	Labrisomidae	Perciformes
165	Microgobius carri	Gobiidae	Perciformes
166	Microspathodon chrysurus	Pomacentridae	Perciformes
167	Monacanthus ciliatus	Monacanthidae	Tetraodontiformes
168	Monacanthus tuckeri	Monacanthidae	Tetraodontiformes
169	Mugil curema	Mugilidae	Mugiliformes
170	Mugil liza	Mugilidae	Mugiliformes
171	Mycteroperca bonaci	Serranidae	Perciformes
172	Mycteroperca interstitialis	Serranidae	Perciformes
173	Mycteroperca venenosa	Serranidae	Perciformes
174	Myripristis jacobus	Holocentridae	Beryciformes
175	Narcine bancroftii	Narcinidae	Torpediniformes
176	Neophion marianus	Holocentridae	Beryciformes
177	Neoniphon coruscom	Holocentridae	Beryciformes
178	Neoniphon vexillarium	Holocentridae	Beryciformes
179	Nicholsina usta	Scaridae	Perciformes
180	Ocyurus chrysurus	Lutjanidae	Perciformes
181	Odontoscion dentex	Sciaenidae	Perciformes
182	Ogcocephalus corniger	Ogcocephalidae	Lophiiformes
183	Ophioblennius mcclueri	Blenniidae	Perciformes
184	Opistognathus macrognathus	Opistosnathidae	Perciformes
185	Opistognathus nothus	Opistosnathidae	Perciformes
186	Opistognathus whitehursti	Opistosnathidae	Perciformes
187	Paraclinus fasciatus	Labrisomidae	Perciformes

188	Paraclinus nigripinnis	Labrisomidae	Perciformes
189	Pareques acuminatus	Sciaenidae	Perciformes
190	Pempheris schomburgkii	Pempheridae	Perciformes
191	Phaeopthyx pigmentaria	Apogonidae	Perciformes
192	Platybelone argalus	Belonidae	Beloniformes
193	Poecilia velifera	Poeciliidae	Cyprinodontiformes
194	Polydactylus oligodon	Polynemidae	Perciformes
195	Polydactylus virginicus	Polynemidae	Perciformes
196	Pomacanthus arcuatus	Pomacanthidae	Perciformes
197	Pomacanthus paru	Pomacanthidae	Perciformes
198	Priolepis hipoliti	Gobiidae	Perciformes
199	Ptereleotris helenae	Ptereleotridae	Perciformes
200	Pterois volitans	Scorpaenidae	Scorpaeniformes
201	Pseudupeneus maculatus	Mullidae	Perciformes
202	Risor ruber	Gobiidae	Perciformes
203	Remora osteochi	Echeneidae	Perciformes
204	Rhomboplites aurorubens	Lutjanidae	Perciformes
205	Rypticus saponaceus	Serranidae	Perciformes
206	Sanopus astrifer	Batrachoididae	Batrachoidiformes
207	Scartella cristata	Blenniidae	Perciformes
208	Scarus iseri	Scaridae	Perciformes
209	Scarus taenioterus	Scaridae	Perciformes
210	Scomberomorus brasiliensis	Scombridae	Perciformes
211	Scorpaena bergii	Scorpaenidae	Scorpaeniformes
212	Scorpaena inermis	Scorpaenidae	Scorpaeniformes
213	Scorpaena plumieri	Scorpaenidae	Scorpaeniformes
214	Selene browni	Carangidae	Perciformes
215	Selene setapinnis	Carangidae	Perciformes
216	Selene vomer	Carangidae	Perciformes
217	Seriola rivoliana	Carangidae	Perciformes
218	Serranus tigrinus	Serranidae	Perciformes
219	Sparisoma atomarium	Scaridae	Perciformes

220	Sparisoma aurofrenatum	Scaridae	Perciformes
221	Sparisoma chrysopterum	Scaridae	Perciformes
222	Sparisoma radians	Scaridae	Perciformes
223	Sparisoma rubripinne	Scaridae	Perciformes
224	Sparisoma viridae	Scaridae	Perciformes
225	Sphoeroides pachygaster	Tetraodontidae	Tetraodontiformes
226	Sphoeroides spengleri	Tetraodontidae	Tetraodontiformes
227	Sphoeroides testudines	Tetraodontidae	Tetraodontiformes
228	Sphyraena barracuda	Sphyraenidae	Perciformes
229	Stathmonothus tekla	Chaenopsidae	Perciformes
230	Stegastes adustus	Pomacentridae	Perciformes
231	Stegastes diencaeus	Pomacentridae	Perciformes
232	Stegastes leucostictus	Pomacentridae	Perciformes
233	Stegastes partitus	Pomacentridae	Perciformes
234	Stegastes planifrons	Pomacentridae	Perciformes
235	Stegastes variabilis	Pomacentridae	Perciformes
236	Stephanolepis setifer	Tetraodontidae	Tetraodontiformes
237	Stephanolepis hispidus	Tetraodontidae	Tetraodontiformes
238	Strongylura marina	Belonidae	Beloniformes
239	Strongylura notata notata	Belonidae	Beloniformes
240	Strongylura timucu	Belonidae	Beloniformes
241	Syngnathus floridae	Syngnathidae	Syngnathiformes
242	Synodon saurus	Synodontidae	Aulopiformes
243	Synodus intermedius	Synodontidae	Aulopiformes
244	Thalassoma bifasciatum	Labridae	Perciformes
245	Trachinotus falcatus	Carangidae	Perciformes
246	Trachinotus goodei	Carangidae	Perciformes
247	Tylosurus acus acus	Belonidae	Beloniformes
248	Tylosurus crocodilus	Belonidae	Beloniformes
249	Umbrina coroides	Sciaenidae	Perciformes
250	Urobatis jamaicensis	Urotrygonidae	Myliobatiformes
251	Xanthichthys rigens	Balistidae	Tetraodontiformes

	254	66	19
254	Xyrichtys splendens	Labridae	Perciformes
253	Xyrichtys novacula	Labridae	Perciformes
252	Xyrichthys martinicensis	Labridae	Perciformes


Anexo 2. Localidades de colecta en los humedales de Puerto Morelos, Quintana Roo.

Localidad	ID Biótica
Manglar carretera a Puerto	6
Ojo de Agua	7
Muelle hotel Desire	8
Frente al restaurante Único	9
Frente a la CONANP	10
Frente al Hotel Excellence	11
Punta Caracol	12
Ojo Norte	13
Manatí	14
Bonanzas Sur	15
Muelle Fiscal	16
Muelle La Marina El Cid	20
Jardín frontal	21
Fish market	24
La Pared	26
Barco hundido	27
Cueva de tiburón	28
Rordman	29
Frente a la Marina El CID	30
Oyanquita	31
Cuevones	32
Pared frontal	34
Puente caído	35
Frente al hotel Dreams	36
Muelle general	38
Bocana bajito sur	37

Boya Zona Norte	19
La Bocana	17
Limones	18
Cazones	22
Olla de Mariscos/Herradura	41
Límite punta Norte del Parque	47
Frente a la Bonanza	39
Intermareal Punta Brava (pozas de marea)	48
Picudas	49
Punta Norte	40
A un costado del Hotel Now Jade, Zona de manglar	42
Aguada torres eléctricas	43
La lagunita (Banco de Material)	44
Estero al lado del hotel Royalton	45
Bahía Petempich	46
Entre pelícanos y Muelle fiscal	50
Mar, casa de playa	51
Límite punta Sur del Parque	52
Secrets Silversands	53
Lado sur Muelle fiscal	54
Muelle los gemelos	55
Caída de lajas	56
Aguada Rancho Sarahuato	57
Cenote en entrada a Playa el Secreto	58
Arenal frente a Punta Brava	59
Ojo pargo	60
Intermareal en Playa el Secreto	61
Frente al muelle general límite del Parque	62
Lado Sur Punta Brava	63

Anexo 3. Tipos de hábitat donde se realizaron las colectas. a) Arrecife coralino, b) arrecife rocoso, c), pastos marinos, d) arrecife artificial, e) manglar, f) laguna artificial, g) cabeza de coral, h) intermareal rocoso, i) mar abierto, j) arenal y k) cenote.

