Informe final* del Proyecto ME004

Compilación de fonoteca de referencia de murciélagos insectívoros de México: Fase I*

Responsable: Dr. Miguel Ángel Briones-Salas

Institución: Asociación Mexicana de Mastozoología, A. C.

Dirección: Calle Hacienda Vista Hermosa número 107, Colonia Villa Quietud, Código

Postal 04960, Delegación Coyoacán, México, Distrito Federal

Correo electrónico: mbriones@ipn.mx

Teléfono: 55 5517 0610, Ext. 82759

Fecha de inicio: 15 de Marzo de 2016 Fecha de término: 30 de Abril de 2021

Principales

Base de datos, Informe final, Cartografía, Fotografías, Audios. resultados:

Forma de citar** el

Sonozotz-Asociación Mexicana de Mastozoología. 2021. Compilación de informe final y otros fonoteca de referencia de murciélagos insectívoros de México: Fase I. resultados: Asociación Mexicana de Mastozoología. Informe final SNIB-CONABIO,

proyecto No. ME004 Ciudad de México.

Resumen:

La detección acústica es una herramienta esencial para el estudio de los murciélagos insectívoros, ya que permite obtener información relevante sobre aspectos claves de su ecología tales como distribución, diversidad, uso del hábitat, dinámica poblacional, periodos de actividad, y relaciones con variables ambientales. Las especies insectívoras representan más del 60% de los murciélagos presentes en las selvas y bosques del sureste de México, llegando hasta la totalidad de las especies en las comunidades de las zonas Neárticas del país. De las 139 especies de murciélagos presentes en México, 83 (60%) emiten pulsos de ecolocación intensos que pueden en muchos casos ser diagnósticos para la identificación de las especies, posibilitando la aplicación de técnicas de detección acústica para su estudio y monitoreo. La información sobre la evolución de la composición, riqueza y niveles de actividad relativos entre especies de murciélagos tiene el potencial de informar sobre el estado de los ecosistemas y su respuesta ante impactos ambientales y el cambio climático. Sin embargo, la aplicación de estas técnicas requiere de la evaluación previa de la variabilidad comportamental y geográfica de las características de los sonidos de ecolocación de las especies y del desarrollo de herramientas informáticas de identificación o discriminación entre especies. Para ello, se requiere de colecciones de sonidos que representen esta variación, cuya reunión representa una tarea formidable en un país como México, con gran extensión territorial y enorme diversidad taxonómica y ambiental. Esta propuesta plantea la elaboración de una fonoteca de sonidos de ecolocación que represente adecuadamente la diversidad taxonómica y territorial del país, a través de un esfuerzo multiinstitucional, que conjunte en una meta común a los mastozoólogos de México que estudian murciélagos con detección acústica, y que permita la capacitación de nuevos recursos humanos que amplíen la cobertura territorial en la aplicación de estas metodologías. La primera parte del proyecto (que se desarrolla en esta propuesta) implica la formación de una plataforma a nivel nacional, integrada por 8 grupos de trabajo regionales, que posibilite la obtención de grabaciones de referencia y la presencia de personal capacitado en todo el territorio mexicano. Se realizarán talleres regionales, en los cuales se establecerá la metodología de trabajo, se socializarán los conocimientos existentes, y se ofrecerá la base conceptual y la capacitación en las técnicas de campo y computación necesarias para la obtención y análisis de grabaciones de referencia, y para la aplicación de las técnicas de detección acústica. Adicionalmente, se reunirán y organizarán las grabaciones que ya poseen algunos grupos de investigación. Los grupos de trabajo emprenderán trabajo de campo para obtener nuevas grabaciones según protocolos validados, las cuales se incorporarán, junto con sus metadatos, en la fase inicial de la conformación de la fonoteca nacional. Se analizará periódicamente la variación intraespecífica e interespecífica del conjunto de grabaciones preexistentes y las de nueva obtención, y se ensayarán herramientas estadísticas de identificación de las especies, con tal de informar el diseño de muestreo adecuado para obtener una buena representación de la variabilidad de los chillidos de ecolocación de los murciélagos mexicanos, y evaluar las metodologías de grabación y las posibilidades de identificación. El objetivo final es construir una fonoteca de referencia nacional y conformar una red de personal capacitado en la aplicación de las técnicas de detección acústica a programas de monitoreo de murciélagos en México. La información generada esta fase del proyecto permitirá desarrollar a más largo plazo una herramienta de identificación automatizada de uso público.

* El maganto de comento no magazanismento continuo los mineiroles negoltodos del magazate comegnendiente

• ** El usuario tiene la obligación, de conformidad con el artículo 57 de la LFDA, de citar a los autores de obras individuales, así como a los compiladores. De manera que deberán citarse todos los responsables de los proyectos, que proveyeron datos, así como a la CONABIO como depositaria, compiladora y proveedora de la información. En su caso, el usuario deberá obtener del proveedor la información complementaria sobre la autoría específica de los datos.

 ^{*} El presente documento no necesariamente contiene los principales resultados del proyecto correspondiente o la
descripción de los mismos. Los proyectos apoyados por la CONABIO así como información adicional sobre ellos,
pueden consultarse en www.conabio.gob.mx

INFORME FINAL

COMPILACIÓN DE FONOTECA DE REFERENCIA DE LOS MURCIÉLAGOS INSECTÍVOROS DE MÉXICO: FASE I Convenio Núm. FB1796/ME004/16

ASOCIACIÓN MEXICANA DE MASTOZOOLOGÍA A.C. (AMMAC)

Mesa Directiva

Presidente: Dr. Enrique Martínez Meyer

Vicepresidente: Dra. María Cristina Mac Swiney González

Secretario: M. en C. Alejandro González Bernal

Tesorera: M. en C. Zaira Yaneth González Saucedo

Por el proyecto

Coordinador General: Dr. Miguel Briones-Salas

Coordinadores Técnicos: Dr. María Cristina Mac Swiney González y

Dra. Verónica Zamora Gutiérrez.

Asistentes Técnicos: M. en C. Fernando J. Montiel Reyes y Dra. Margarita García Luis

Mayo 2020

ÍNDICE GENERAL

1 RESUMEN EJECUTIVO	4
2 INTRODUCCIÓN	7
3 ANTECEDENTES DEL PROYECTO	12
4 OBJETIVOS	25
4.1. OBJETIVO GENERAL	25
4.2. OBJETIVOS PARTICULARES	25
5 MÉTODOS UTILIZADOS	27
5.1. Conformación de una red de grupos de trabajo	27
5.1.1. Organización general del proyecto	27
5.1.2. Regionalización del país y grupos de trabajo	31
5.1.3. Coordinadores regionales	33
5.2. Talleres de entrenamiento e intercambio de experiencias	35
5.2.1. Primera reunión. Taller general del proyecto	35
5.2.2. Segundo taller regional. Región Norte	35
5.2.3. Tercer taller regional. Región Sureste-Suroeste	36
5.2.4. Cuarto taller regional. Región Centro	36
5.3 Obtención de datos y grabaciones	37
6 RESULTADOS OBTENIDOS	39
6.1. Protocolo de muestreo	39
6.2. Informe de actividades de los talleres realizados	40
6.2.1. Informe de la Primera reunión. Taller general del proyecto	40
6.2.2. Informe del Segundo taller regional. Región Norte.	42
6.2.3. Informe del Tercer taller regional. Región Sureste-Suroeste	45

6.2.4. Informe del Cuarto taller regional. Región Centro	47
6.3. Informe de actividades del 100% de las salidas de campo	53
6.4. Mapa de las localidades muestreadas	60
6.5. Número total de grabaciones acústicas en formato WAV	68
6.6. Base de datos en formato Microsoft Excel con los metadatos	71
6.7. Base de datos en formato Microsoft Excel con las colecciones biológicas	74
de los tejidos y ejemplares colectados	
6.8. Fotografías digitales de los individuos colectados	76
7 DISCUSIÓN	77
8 CONCLUSIONES	82
9 REFERENCIAS	83
10 CRÉDITOS	93

1.- RESUMEN EJECUTIVO

La detección acústica es una herramienta esencial para el estudio de los murciélagos insectívoros, que permite obtener información relevante sobre aspectos clave de su ecología tales como distribución, diversidad, uso del hábitat, dinámica poblacional, periodos de actividad y relaciones con variables ambientales. Las especies insectívoras representan más del 60% de los murciélagos en las selvas y bosques del sureste de México, llegando hasta la totalidad de las especies en las comunidades de las zonas Neárticas del país. De las 139 especies de murciélagos presentes en México, 83 (60%) emiten pulsos de ecolocalización intensos que pueden en muchos casos ser diagnósticos para la identificación de las especies, posibilitando la aplicación de técnicas de detección acústica para su estudio y monitoreo. La información sobre la composición, riqueza y niveles de actividad relativos entre especies de murciélagos tiene el potencial de informar sobre el estado de los ecosistemas y su respuesta ante impactos ambientales como el cambio climático y de uso de suelo. Sin embargo, la aplicación de estas técnicas requiere de la evaluación previa de la variabilidad intraespecífica e interespecífica de las características de los sonidos de ecolocalización de las especies y del desarrollo de herramientas de identificación o discriminación acústica entre especies. Para ello, se requiere de colecciones de sonidos de referencia que representen esta variación. La compilación de este material significa una tarea moumental en un país como México, con gran extensión territorial y enorme diversidad taxonómica y ambiental. Esta propuesta planteó la elaboración de una fonoteca de sonidos de ecolocalización que represente adecuadamente la diversidad taxonómica y ambiental del país, a través de un esfuerzo multiinstitucional. La Asociación Mexicana de Mastozoología A.C. (AMMAC) conjuntó en una meta común a los mastozoologos de México que estudian murciélagos con detección acústica, y así permitir la capacitación de nuevos recursos humanos en la aplicación de estas metodologías a lo largo del país. La primera parte del proyecto (que se desarrolla en esta

propuesta) implica la formación de una red de trabajo a nivel nacional, integrada por ocho grupos de trabajo regionales, que posibilite la obtención de grabaciones de referencia y la presencia de personal capacitado en todo el territorio mexicano. Se realizaron cuatro talleres regionales, en los cuales se estableció la metodología de trabajo, se socializaron los conocimientos existentes, se ofreció la base conceptual, y se capacitó en las técnicas de campo necesarias para la obtención de grabaciones acústicas de referencia. Los grupos de trabajo en cada región del país realizaron actividades de campo para obtener grabaciones de acuerdo al protocolo validado, las cuales se incorporarán, junto con sus metadatos, en la base de datos final que conformará la fonoteca nacional. La información generada en esta fase del proyecto permitirá desarrollar a más largo plazo una herramienta de identificación automatizada de uso público y programas de monitoreo regionales y nacionales. Durante este tercer y último informe de actividades del proyecto "Compilación de fonoteca de referencia de los murciélagos insectívoros de México: fase I", para el periodo de trabajo comprendido entre el 15 de marzo de 2016 y el 28 de febrero del 2018, se presentan las siguientes actividades y productos: a) protocolo de metodologías para la adquisición del material acústico, b) informe de actividades de los talleres regionales, c) informe de actividades de salidas de campo (183 en total en las 8 regiones), d) mapa en formato digital de las localidades muestreadas, e) total de grabaciones acústicas en formato WAV (2032 grabaciones de 1657 individuos), f) base de datos en formato Microsoft Access con los metadatos de las 2032 grabaciones, g) base de datos en formato Microsoft Access con los datos de los ejemplares y tejidos en colecciones biológicas, h) fotografías digitales de los individuos capturados. Se conformó una red de grupos de trabajo con personal capacitado integrada por investigadores, alumnos y técnicos de aproximadamente 30 instituciones académicas. Entre los participantes se obtuvieron 2032 llamados de 68 especies de especies de murciélagos insectívoros mexicanos (Familias: Vespertilionidae, Molossidae, Phyllostomidae, Mormoopidae, Natalidae, Noctilionidae y Emballonuridae) y sus respectivas fotografías digitales para 27 estados de la República Mexicana.

2.- INTRODUCCIÓN

La detección acústica es una herramienta esencial para el estudio de los murciélagos insectívoros, ya que permite obtener información relevante sobre aspectos clave de su ecología como distribución, diversidad, uso del hábitat, dinámica poblacional, periodos de actividad y relaciones con variables ambientales. De las 139 especies de murciélagos presentes en México, 83 (60%) emiten pulsos de ecolocalización intensos que pueden ser detectados con relativa facilidad por detectores ultrasónicos y en muchos casos pueden utilizarse para la identificación de las especies. Esto posibilita la aplicación de técnicas no invasivas de detección acústica para su estudio y monitoreo. La información sobre los cambios espacio-temporales de la composición, riqueza y niveles de actividad relativos de los ensamblajes de murciélagos tiene el potencial de informarnos sobre el estado de los ecosistemas y su respuesta ante impactos ambientales como el cambio climático y el cambio de uso de suelo.

Sin embargo, la aplicación de estas técnicas requiere de la evaluación previa de la variabilidad intraespecífica e interespecífica de las características de los sonidos de ecolocalización de las especies y del desarrollo de herramientas que permitan hacer una adecuada clasificación de los sonidos a diferentes niveles taxonómicos o. Para ello, se requiere de colecciones de referencia de sonidos que representen esta variación, cuya compilación significa una tarea monumental en un país como México, con gran extensión territorial y enorme diversidad taxonómica y ambiental.

Esta propuesta plantea la elaboración de una fonoteca de sonidos de ecolocalización que represente adecuadamente la variación taxonómica, geográfica y ambiental de estos sonidos. Para ello se requiere un esfuerzo multiinstitucional que conjunte en una meta común a los mastozoologos de México que utilizan la detección acústica para el estudio de murciélagos, y que permita la capacitación de nuevos recursos humanos en la aplicación de

estas metodologías a lo largo del país. La primera parte del proyecto (que se desarrolla en este documento) incluye la creación de una red nacional, integrada por ocho grupos de trabajo regionales, que posibilitó la obtención de grabaciones de referencia y la presencia de personal capacitado en temas de acústica a lo largo del territorio mexicano. Se realizaron talleres regionales en los que se estableció la metodología de trabajo, se socializaron los conocimientos existentes, se ofrecieron bases conceptuales y se capacitó a los participantes en el proyecto para el uso de las técnicas de campo necesarias para la obtención de grabaciones de referencia, así como para la aplicación de las técnicas de detección acústica. Los grupos de trabajo realizaron múltiples salidas de campo para obtener nuevas grabaciones siguiendo el protocolo establecido para homogeneizar metodologías y para estandarizar la calidad de las grabaciones. Las grabaciones obtenidas y sus metadatos forman parte de la fase inicial de la conformación de la fonoteca nacional.

El objetivo final de este proyecto es construir una fonoteca de referencia nacional y conformar una red de personal capacitado en la aplicación de las técnicas de detección acústica a programas de monitoreo de murciélagos en México. La información generada permitirá desarrollar a más largo plazo una herramienta de identificación automatizada de uso público y programas de monitoreo regionales y nacionales.

Justificación.

Los murciélagos insectívoros constituyen una fracción muy importante de la diversidad de mamíferos de los ecosistemas mexicanos (Ceballos y Oliva, 2005) y proporcionan servicios ambientales muy valiosos como la supresión de artrópodos que constituyen plagas agrícolas y forestales, la redistribución de nutrientes entre ecosistemas, el soporte de las cadenas tróficas de los ecosistemas cavernícolas y la provisión de guano como fertilizante de uso agrícola, entre otros (Cleveland *et al.*, 2006; Kunz *et al.*, 2011; McCracken *et al.*, 2012).

Por otro lado, los murciélagos insectívoros son susceptibles a amenazas generadas

por la actividad humana. Es evidente que estas especies son sensibles a la pérdida y degradación de los hábitats naturales y a los pesticidas y contaminantes (Racey y Entwistle, 2003). Muchas especies se han revelado excepcionalmente sensibles a impactos con los generadores de energía eólica (Kunz *et al.*, 2007a), y otras son especialmente vulnerables a las perturbaciones de sus refugios (Arita, 1996; Racey y Entwistle, 2003).

Los datos que se pueden generar mediante monitoreos acústicos son de fundamental importancia para evaluar el estado de conservación de las especies y su vulnerabilidad ante las modificaciones de los hábitats. Estas herramientas también pueden servir para planificar las modificaciones al ambiente derivadas de la construcción de infraestructura humana, como en el caso de la instalación de plantas eólicas, de forma que se minimice el impacto sobre la quiropterofauna (Kunz et al., 2007b). Así mismo, el monitoreo acústico de los murciélagos puede aportar información clave sobre el funcionamiento y estado de conservación de los ecosistemas (Haysom et al., 2013), y sobre los efectos de las actividades humanas y los cambios ambientales sobre la biodiversidad (Jones et al., 2013; Rebelo et al., 2010; Sherwin et al., 2013). El monitoreo acústico puede también contribuir de forma fundamental a completar el conocimiento de la distribución de la fauna mexicana de quirópteros insectívoros ya que es una técnica relativamente fácil y barata de implementar que se puede utilizar en grandes extensiones territoriales .

Sin embargo, la aplicación adecuada de las técnicas de detección acústica requiere del conocimiento del comportamiento ecolocalizador y de las características de los sonidos de ecolocalización de las especies. La identificación acústica suele ser sencilla en el caso de especies con sonidos muy característicos (la mayoría de los embalonúridos, mormópidos y noctiliónidos), pero es más complicada en el caso de especies de las familias Vespertilionidae y Molossidae, que presentan características acústicas muy similares debido a su cercanía evolutiva y convergencias ecológicas. están evolutivamente cercanas y en algunos casos pueden alimentarse de forma parecida. En cualquier caso, la determinación taxonómica depende de la existencia de material de referencia. Al igual que los organismos colectados en

campo se identifican por comparación con los referentes en las colecciones de museo, los sonidos registrados en campo deben compararse con una colección de referencia. Para la identificación de especies por medios acústicos, es necesario elaborar criterios de identificación con base en el análisis cuantitativo de los sonidos de ecolocalización para poder asignar certezas de identificación (Parsons y Szewczak, 2009). El desarrollo de estos criterios, su calidad y precisión depende de la disponibilidad de una fonoteca de referencia con representación suficiente de las vocalizaciones y su variación de las especies presentes en el área de interés (Walters *et al.*, 2012).

La aplicación de las metodologías de detección acústica en países como México todavía está limitada por la poca disponibilidad de equipo y, sobre todo, a que no se cuenta con fonotecas de referencia adecuadas para la elaboración de criterios de identificación de las especies (Walters *et al.*, 2013). La compilación de una fonoteca de sonidos de ecolocalización representativa de las especies presentes en el país, así como el desarrollo de criterios de identificación acústica que pudieran estar disponibles como herramientas electrónicas de uso libre, potenciará sin duda el uso de los métodos de detección acústica. La disponibilidad de una herramienta de identificación y de metodologías de monitoreo estandarizadas facilitaría la operación y la obtención de datos confiables a las empresas, agencias gubernamentales, academia, empresas y otros sectores interesados en el monitoreo y evaluación de murciélagos insectívoros. Esto permitiría la generación de información sobre la distribución de las especies, y posibilitaría la creación de programas de monitoreo en áreas naturales protegidas, de ámbito local, estatal o nacional.

Otra limitante para la aplicación de las técnicas de detección acústica, es que el número de profesionales capacitados para su uso es todavía limitado y geográficamente restringido a unos cuantos "focos" regionales que no permiten una amplia cobertura del territorio mexicano. México es inmenso, y la fauna de murciélagos muy diversa, abundante y de composición muy distinta entre regiones. Esto favorece la existencia de variación geográfica considerable en las características de los sonidos de ecolocalización de especies

particulares, lo cual hace difícil que grupos de investigación aislados desarrollen las bases para la aplicación de las técnicas de detección acústica y de monitoreo de poblaciones de murciélagos insectívoros a nivel nacional. El trabajo por separado puede conducir a la duplicidad de esfuerzos, con la consecuente ineficacia en tiempo y economía. La creación de una fonoteca nacional en un tiempo razonable, y la posibilidad de realizar monitoreos de escala nacional, dependen de la formación de una red de profesionales y colaboradores distribuidos por todo el territorio nacional que en un esfuerzo coordinado garanticen una amplia cobertura geográfica, ambiental y taxonómica.

Por ello, la Asociación Mexicana de Mastozoología, A. C. (AMMAC), que reúne a un porcentaje mayoritario de los profesionales y estudiantes de la mastozoología en México, se plantea la iniciativa de sentar las bases necesarias para la aplicación de las técnicas de detección acústica a las necesidades nacionales de conocimiento y conservación de la fauna de quirópteros insectívoros, así como para el uso del monitoreo de sus comunidades como herramienta de evaluación ambiental. Estas bases incluyen la creación de una red creciente de personal capacitado en la aplicación de las técnicas de detección acústica, la compilación progresiva de una fonoteca representativa de los sonidos de ecolocalización de las especies presentes en el país, y de la elaboración de criterios de identificación de las especies que resulten en el diseño de herramientas de identificación automatizadas.

Por otro lado, la Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), como organismo dedicado a promover el conocimiento, conservación y uso sustentable de la diversidad biológica de México, es un socio natural de la AMMAC en el proyecto que se propone. Este proyecto pretende generar conocimiento sobre uno de los grupos más ricos y abundantes de la mastofauna mexicana, y proporcionar herramientas para obtener datos sobre su distribución, ecología y abundancia, con lo cual resulta natural que se considere una coordinación con el Sistema Nacional de Información sobre Biodiversidad (SNIB) que opera CONABIO.

3.- ANTECEDENTES DEL PROYECTO

Los murciélagos representan alrededor del 30% de la fauna mexicana de mamíferos terrestres. En algunos ecosistemas locales, como son las selvas y bosques del sureste mexicano, este porcentaje puede alcanzar el 60% de las especies (Ceballos *et al.*, 2005). Esta diversidad taxonómica corresponde a una gran diversidad de roles ecológicos que contribuye de forma fundamental al funcionamiento de los ecosistemas y a la provisión de importantes servicios ambientales (Kunz *et al.*, 2011). Además del interés intrínseco del estudio de los murciélagos y del necesario seguimiento de las especies que puedan sufrir amenazas para la conservación de sus poblaciones y los servicios ecológicos que proporcionan, el monitoreo de este grupo tan diverso puede aportar información fundamental sobre el estado o los procesos de cambio de los ecosistemas.

Los murciélagos insectívoros usan los hábitats y microhábitats de forma especialista y diferencial (Kalko *et al.*, 2008). Debido a la gran capacidad de movimiento que les confiere el vuelo, pueden cambiar de forma rápida los patrones de actividad y uso del hábitat, respondiendo a los cambios ambientales a nivel de paisaje de forma más expedita y dramática que otros organismos menos móviles, cuyas dinámicas responden a escalas espaciales más finas (Wilson *et al.*, 1996). Por ello, los murciélagos pueden ser especialmente informativos con respecto a los cambios funcionales inducidos por las actividades humanas y los cambios ambientales a nivel paisajístico (Jones *et al.* 2013; Lundy *et al.*, 2010; Mehr *et al.*, 2011), sirviendo como indicadores de conservación de la biodiversidad y calidad de los ecosistemas (Haysom *et al.*, 2013; Meyer *et al.*, 2010).

Sin embargo, debido a su gran movilidad y hábitos nocturnos, los murciélagos son un grupo difícil de monitorear mediante métodos de observación directa. Las especies frugívoras, sanguívoras y nectarívoras son relativamente fáciles de estudiar mediante su captura con redes de niebla, pero muchos murciélagos insectívoros desarrollan su actividad a mayor altura o detectan fácilmente las redes, con lo cual las capturas no reflejan

adecuadamente su presencia, ni riqueza, ni su abundancia en los ecosistemas (Kunz *et al.*, 2009).

Todos los murciélagos americanos utilizan un sistema de sonar basado en la emisión de sonidos ultrasónicos y el análisis de sus ecos. De las 139 especies de murciélagos que habitan México, el 60% (83 spp.) emiten sonidos de ecolocalización intensos que, con el equipo apropiado, pueden detectarse a distancias relativamente grandes. La inmensa mayoría de estos murciélagos se alimenta de insectos voladores, aunque unas cuantas especies recogen presas sobre superficies y entre el follaje, y los murciélagos *Noctilio leporinus* y *Myotis vivesi* atrapan peces. El sistema de sonar es indispensable para la navegación y la detección de presas, por lo cual los murciélagos emiten sonidos de ecolocalización continuamente mientras forrajean en el hábitat. Es decir, filtran información sobre su presencia y, contando con el equipo adecuado, son detectables en todo momento mientras se mueven en el ambiente.

Esto los presenta como un taxón especialmente apropiado para el monitoreo acústico, debido a que las tasas de detección se relacionan con la abundancia y niveles de actividad (ej. Hutchinson y Waser, 2007), en contraste con otros animales (por ejemplo, insectos, ranas, aves y otros mamíferos), cuyas emisiones acústicas tienen una función de comunicación social y se emiten tan sólo en ciertas circunstancias o épocas del año y por tan sólo una fracción de los individuos de la población (machos, adultos, etc.). Resulta afortunado que los murciélagos más difíciles de monitorear mediante métodos de captura son los más fácilmente detectables e identificables por medios acústicos. Esto ofrece una gran oportunidad para completar la deficiente información sobre su distribución, y para obtener datos de su ecología y relaciones con el hábitat.

En los últimos años se ha desarrollado tecnología cada vez más sofisticada, portátil y económicamente accesible para la detección de ultrasonidos, que ha hecho relativamente sencilla la detección y grabación de las emisiones de ecolocalización de los murciélagos en campo (Parsons y Szewczak, 2009). El desarrollo de estas nuevas tecnologías ha generado un

gran potencial en la aplicación de la detección acústica al estudio de diferentes aspectos de la biología de los murciélagos.

Las técnicas de detección acústica permiten la evaluación no invasiva de las poblaciones de murciélagos y pueden proporcionar datos de abundancia e indicadores de la estructura de sus comunidades (Rainey e Ingersoll, 2009; Roche *et al.*, 2011). También son efectivas para el estudio del uso de hábitat y niveles de actividad a diferentes escalas temporales y espaciales, permitiendo la comparación entre hábitats, estructuras de paisaje y grados de perturbación (Gómez-Naranjo, 2013; Grindal, 1996; Pellet y Schmidt, 2005; Sherwin *et al.*, 2000; Torres-Morales 2007; Williams-Guillen y Perfecto, 2011; Wickramasinghe *et al.*, 2003). Permiten también realizar monitoreos de tendencias poblacionales y estudios sobre diversidad a grandes escalas, ya que la detección acústica es una de las metodologías más fáciles, rápidas y baratas de implementar a largo plazo y sobre grandes extensiones territoriales (Jones *et al.* 2013; Roche *et al.*, 2011; 2012; Stahlschmidt y Bruhl, 2012; Walters *et al.*, 2013).

El monitoreo acústico está recomendado para la evaluación de poblaciones de murciélagos insectívoros por las agencias gubernamentales en Europa (Battersby, 2010), Australia (Reardon, 2010), Estados Unidos (Manley *et al.*, 2006) y Canadá (ej. Vonhof, 2002). En Estados Unidos, la técnica se utiliza para monitorear poblaciones de varias especies catalogadas como amenazadas (ej. USFWS, 2014), en áreas protegidas (ej. USFWS, 2012a), y como parte de los protocolos estándar para evaluar los impactos de las centrales de energía eólica (USFWS, 2012b). El "Bat Conservation Trust", en Inglaterra, y la "Bat Conservation Ireland", en Irlanda, organizan los programas de monitoreo acústico más longevos e intensos. Estos programas se basan en la colaboración de cientos de voluntarios adecuadamente entrenados que colectan datos de detección acústica de forma estandarizada en recorridos en vehículos o a pie, en hábitats naturales y humanizados, y a lo largo de aguas superficiales. Uno de los programas de monitoreo territorialmente más extensos es el proyecto iBats (www.ibats.org.uk), que está basado en una red de voluntarios

que recorren un mismo transecto en automóvil dos veces al año utilizando un detector ultrasónico donado por el programa. iBats ha establecido redes de monitoreo en Bulgaria, Inglaterra, Hungría, Japón, Rumanía, Rusia y Ucrania, algunas de las cuales han colectado datos por más de 5 años, y se está extendiendo a otros países (Jones *et al.* 2013). Estas estrategias organizadas de ciencia cuidadana ha permitido analizar las tendencias poblacionales de varias de las especies nativas a largo plazo y a nivel continental (BTC, 2010; Roche *et al.*, 2012).

La aplicación de las técnicas de detección acústica para el monitoreo de poblaciones de murciélagos requiere de la identificación de los sonidos de ecolocalización detectados. Ello requiere a su vez de la disponibilidad de fonotecas de referencia, que cuenten con conjuntos de grabaciones de calidad representativos de la diversidad taxonómica y de la variación individual y geográfica de las especies presentes en el territorio de interés. Requiere también del análisis de este material para definir criterios y precisión de identificación y evaluar las probabilidades de discriminación entre especies. El gran potencial de las técnicas de detección acústica ha impulsado la creación de fonotecas en las áreas mejor estudiadas como Europa occidental, Estados Unidos, Canadá y Australia (ej. British Library Sound Archives, Cornell Lab of Ornitology-Macaulay Library, Batcalls.com; ver Walters et al., 2013, para más referencias).

En el 2012 se inició la creación de una fonoteca de referencia de sonidos de murciélagos a nivel mundial, 'EchoBank' (Collen, 2012). En esta fonoteca se están intentando reunir las grabaciones existentes en otras bases de datos de carácter regional, y las proporcionadas por investigadores de todo el planeta. Se espera que eventualmente sea de consulta pública pero todavía no ha sido liberada. Colaboradores de esta propuesta que han tenido acceso a esa base de datos han observado que las especies mexicanas están muy poco representadas en ella (Zamora-Gutiérrez, com. per.). A partir del análisis del muy abundante material europeo compilado en 'Echobank', recientemente se construyó una herramienta de identificación acústica para toda Europa, disponible en red

(https://sites.google.com/site/ibatsresources/iBatsID), la cual se está aplicando al análisis de las grabaciones recabados por el programa iBats (Jones *et al.*, 2013; Roche et al., 2011; Walters *et al.*, 2012).

Aunque la identificación acústica es una herramienta poderosa para el estudio y monitoreo de las poblaciones de murciélagos, principalmente los insectívoros, no constituye una herramienta infalible, ni su aplicación está exenta de dificultades. En primer lugar, hay que considerar que el comportamiento acústico de los murciélagos no es uniforme a lo largo de su actividad de forrajeo. Las características de los llamados de ecolocalización varían en función de las necesidades perceptivas de los animales, distinguiéndose en general 3 fases:

1) en la "fase de búsqueda" los murciélagos en general emiten pulsos de estructura uniforme y más o menos espaciados regularmente (aproximadamente de 1 a 14 pulsos por segundo, dependiendo de la especie), que tienen la función de recopilar información sobre la estructura espacial del medio y la posible presencia de presas y otros organismos.

Cuando se ha producido la detección, el murciélago entra en 2) la "fase de aproximación", en la cual acelera la tasa de emisión de pulsos, los cuales generalmente se acortan en duración y aumentan en la tasa de modulación, atendiendo a la necesidad del murciélago de obtener información más detallada sobre la estructura de la presa potencial. Finalmente, ante la identificación del objeto como una presa deseable, el murciélago prosigue con 3) la "fase de captura", en la cual la tasa de emisión de pulsos aumenta de forma extraordinaria (hasta tasas cerca de 200 pulsos por segundo), los cuales se simplifican en estructura, ya que su función ahora reside tan sólo en proporcionar información sobre la rápidamente cambiante posición relativa de la presa respecto al murciélago (Griffin *et* al. 1960, Schnitzler y Kalko 1998).

Debido a la cambiante estructura de los pulsos, no todos son igualmente adecuados para la identificación acústica. Particularmente, los pulsos de la fase de aproximación, y especialmente los de la fase de captura, son más semejantes entre especies, debido a la convergencia y simplificación de su función portadora de información (Jones y Holderied

2007, Schnitzler y Kalko 1998). Es evidente que los pulsos de esas fases no se deben emplear en la elaboración de criterios de identificación, y se deben eliminar en el proceso de edición de secuencias de sonido destinadas a tal fin, pero ejemplos de ellas deberían formar parte de una fonoteca representativa del comportamiento ecolocador de los murciélagos (Parsons y Szewczak 2009). Al mismo tiempo, una herramienta de clasificación automatizada debería considerar la extracción de datos de pulsos de la fase de búsqueda en grabaciones que puedan contener otros tipos de comportamiento acústico. Afortunadamente, las fases de aproximación y captura son de corta duración (unos 0.5-2 segundos), fácilmente reconocibles y siempre están insertas en secuencias más largas de pulsos de la fase de búsqueda. Por otro lado, la tasa de secuencias de la fase de aproximación y captura de presas da información sobre el uso del hábitat por parte de los murciélagos, y sería útil poder cuantificar estos comportamientos de forma automatizada, para la cual no se han desarrollado métodos adecuados. Adicionalmente, los murciélagos tienen un repertorio de llamados con función de comunicación social que pueden ser informativos sobre su identidad taxonómica y comportamiento (ej. Fenton, 2003), el cual debería reflejarse en una fonoteca de referencia.

El desarrollo de herramientas de identificación acústica debe considerar también la existencia de variación individual e intraespecífica en las características de los llamados de ecolocalización de la fase de búsqueda. Debido a la variabilidad en las necesidades perceptivas, un mismo murciélago emite pulsos de características diferentes según su localización en el ambiente. En el caso de la mayoría de los murciélagos Neotropicales que emiten señales de frecuencia modulada (FM), los llamados emitidos en el espacio abierto son de mayor duración y cubren una banda de frecuencias más estrecha que aquellos emitidos cuando vuelan cerca del suelo o de objetos verticales como vegetación o rocas (ej. Siemers *et al.* 2001). Este acortamiento de los pulsos responde a la necesidad de evitar la superposición emisión-ecos y ecos-diversos objetos, y a la necesidad de obtener mayor resolución en el cálculo de la posición de los objetos de fondo y las presas (ej. Kalko y

Schnitzler 1993, Schnitzler *et al.* 2003, Simmons *et al.* 1975), mientras que en espacios abiertos los pulsos de baja frecuencia, banda estrecha y larga duración permiten la detección de presas a mayores distancias gracias a una menor presencia de obstáculos en el ambiente (Barclay y Brigham 1991).

Además de esta variabilidad individual en el comportamiento ecolocador de las especies, existe una variación individual dentro de las poblaciones que puede estar relacionada con ciertas variables biológicas como tamaño corporal, masa, condición física, edad y sexo. Por otro lado, hay evidencia de que al menos en algunas especies puede haber una variación geográfica importante en las características de los sonidos de ecolocalización (Guillén et al., 2000; Barclay y Brigham, 2004). Esto puede complicar la identificación acústica a gran escala que incluyen poblaciones geográficamente variables o especies con características similares pero que residen en áreas diferentes (Barclay y Brigham, 2004). Al construir herramientas de identificación acústica hay que considerar y evaluar estos posibles factores de variación para considerar su inclusión en los criterios de identificación. Por ejemplo, una herramienta a nivel nacional puede subdividirse en una serie de conjuntos regionales de especies que incluya el origen geográfico de las grabaciones entre los criterios de identificación. Evidentemente, la posibilidad de construir herramientas de identificación válidas en amplios territorios y para distintos estratos de las poblaciones requiere de la disponibilidad de colecciones de grabaciones en los que esté representada de forma adecuada toda esta variabilidad, lo cual se puede lograr mediante un sistema de muestreo debidamente planificado.

La existencia de variación individual en las características de los sonidos de ecolocalización tiene fuertes implicaciones sobre los métodos de obtención de grabaciones de referencia. Aunque en algunas pocas especies con llamados de ecolocalización relativamente invariables (ej. *Pteronotus parnellii, Natalus mexicanus*), es posible obtener grabaciones útiles haciéndolas volar en espacios confinados, en la mayoría de los casos es necesario obtener las grabaciones cuando los murciélagos están a alturas y en ambientes

típicos de la especie. Esto requiere de buenos conocimientos sobre la ecología y el comportamiento de las especies, y de habilidades y técnicas apropiadas para conseguir que los murciélagos previamente capturados e identificados vuelen en sus condiciones típicas mientras se mantienen lo suficientemente cerca de los detectores para obtener grabaciones con suficiente intensidad y calidad (Parsons y Szewczak, 2009).

Para ello se han utilizado diversas técnicas de grabación, desde la liberación de los murciélagos en entornos con características espaciales que permiten dirigir el vuelo de los murciélagos dependiendo de las características de la especie (por ejemplo, frente a setos, bordes de bosque, o en barrancas), con o sin distintos tipos de marcajes luminosos o siguiéndolos con una lámpara, hasta la sujeción del murciélago mediante un hilo ligero a una tirolesa. También se pueden obtener grabaciones de murciélagos en vuelo libre siempre y cuando se pueda determinar la especie con certidumbre. Estas excepciones incluyen el caso de refugios monoespecíficos y que se pueda seguir el vuelo de los murciélagos hasta una cierta distancia que evite el efecto de la presencia de objetos cercanos, o que la forma o la coloración del murciélago permita su identificación inequívoca al iluminarlo durante el vuelo (Parsons y Szewczak, 2009). Así mismo, todos estos métodos pueden introducir variación en las características de los llamados de ecolocalización emitidos por los murciélagos, los cuales deben ser evaluados de forma adecuada mediante los análisis estadísticos apropiados.

Aun contando con fonotecas bien nutridas y representativas de la variabilidad de sonidos producidos por todas las especies presentes en el área geográfica de interés, no se puede esperar que la identificación de las especies sea absolutamente certera, salvo en los grupos de murciélagos con pulsos de estructura exclusiva, aún con las técnicas de análisis más sofisticadas. Hay que tener en cuenta que los llamados de ecolocalización de los murciélagos han evolucionado como elementos portadores de información sensorial, y no como señales sociales de identificación de conespecíficos (como los cantos de las aves o los insectos) y como tales están sujetos a los procesos de convergencia y paralelismo evolutivos. Por ello, debemos esperar que especies con historia evolutiva compartida, tamaño corporal

similar, y que forrajean de forma parecida, utilicen sonidos de ecolocalización similares, ya que tienen necesidades sensoriales compartidas (Barclay, 1999).

Las experiencias anteriores de construcción de criterios y herramientas de separación entre especies por sus sonidos han mostrado que la identificación es generalmente probabilística, con un cierto grado de incertidumbre (Zamora-Gutiérrez et al., 2016). Otros estudios han notado dificultades especiales en separar algunos grupos de murciélagos vespertiliónidos, como los del género *Myotis* (Hughes et al., 2011; Walters et al., 2012). Es de esperar que con una fauna de murciélagos tan diversa como la mexicana, aparezcan dificultades en separar los llamados producidos por las especies de ciertos grupos, aunque también nos encontramos con la ventaja de que algunos de los grupos de insectívoros tropicales como los embalonúridos y los mormópidos, emiten sonidos altamente característicos y generalmente pueden ser perfectamente identificados (Zamora-Gutierrez et al., 2016). Una forma de evitar la conformación de conjuntos de especies con sonidos muy parecidos es el separar las faunas regionales que puedan presentar especies similares ecológicamente pero de distribución alopátrica. Finalmente, y a pesar de no identificar el 100% de los sonidos, no se descarta la utilidad esta técnica a diferentes niveles taxonómicos (familias, géneros, grupos tróficos) (Zamora-Gutierrez et al., 2016).

Para la detección y grabación de los llamados de ecolocalización de los murciélagos se pueden emplear una diversidad de equipos y técnicas. Algunas técnicas de transformación de ultrasonidos como la del heterodinaje, pierden la mayor parte de la información de la señal y no permiten la extracción de la mayoría de los parámetros necesarios para la discriminación de muchas especies, aunque pueden ser útiles para la identificación inequívoca de unas pocas especies con sonidos de frecuencias y características espectrales muy particulares.

Las técnicas de división de frecuencias mediante conteo de cruces por cero, que utilizan equipos muy populares como los de Anabat (Titley Electronics), pierden información sobre muchas variables de interés para la discriminación entre especies al eliminar la

información sobre amplitud y componentes armónicas, y por la necesidad de incorporar mecanismos de detección de las señales basados en la intensidad y no en la composición del espectro (Fenton, 2000; Parsons y Szewczak, 2009). Además, ofrecen menor distancia de detección (Adams *et al.*, 2012). Hasta hace unos años, estas técnicas tenían la ventaja de que la escasez de datos registrados permitía el almacenamiento de muchas grabaciones en poco espacio de memoria y el rápido procesamiento de los archivos. Sin embargo, con el desarrollo de procesadores de cómputo mucho más rápidos y memorias y discos duros de mucha mayor capacidad, estas ventajas sobre métodos de muestreo y proceso digital más intensivos han desaparecido. Aunque las técnicas de división de frecuencias se han empleado para elaborar fonotecas de referencia y herramientas de identificación, sus limitaciones comprometen la capacidad de alcanzar una gran precisión en la clasificación, en especial en áreas con gran diversidad de especies con sonidos similares.

La técnica preferida hoy en día es el muestreo digital de la señal captada con un micrófono sensible y con la respuesta relativamente plana al rango de frecuencias empleados por los murciélagos, mediante un convertidor analógico/digital de alta velocidad de muestreo (normalmente por encima de 250 kHz, ya que se necesita una frecuencia de muestreo al menos del doble de la máxima frecuencia que se pretende muestrear; Bradbury y Vehrencamp, 1998). La señal así digitalizada se puede almacenar temporalmente en una memoria digital, y reproducirla a menor velocidad, según el método conocido como "expansión del tiempo", consiguiendo una conversión de la frecuencia al rango audible, y permitiendo la grabación en un sistema analógico o digital que trabaje en este rango audible. Con el descenso de costos de las memorias digitales y el aumento de la velocidad de los procesadores y las interfaces de comunicación, se ha hecho posible desarrollar aparatos que vuelcan directamente los datos a memorias de alta capacidad o al disco duro de una computadora mediante puertos USB, lo cual elimina la necesidad de conversión de frecuencias y de las grabadoras, permitiendo la captura digital de largas sesiones de detección acústica. Estos últimos métodos son los preferidos en la actualidad, ya que

permiten la obtención de grabaciones de alta calidad, con la preservación máxima de las características temporales y espectrales de las señales, lo cual permite la extracción de un mayor número de parámetros y mejora la capacidad de discriminar entre especies (Parsons y Szewczak, 2009).

Aunque un programa de monitoreo se beneficiaría de la mayor estandarización posible de las metodologías de obtención de datos, para algunos proyectos es conveniente poder incorporar toda la información disponible. Algunas de las técnicas de detección heterodina más sencillas pueden servir perfectamente para documentar la presencia de especies características, tales como *Pteronotus parnellii*, mientras que las técnicas de división de frecuencias o cruces por cero sirven para documentar la presencia de especies con sonogramas muy característicos, como la mayoría de los murciélagos en las familias de los emballonúridos y mormópidos, y algunos de los molósidos. Igualmente, distintos tipos de micrófonos y detectores pueden proporcionar grabaciones de distinta calidad, pero que permitan la incorporación de datos valiosos a un programa de monitoreo.

Por ello, no conviene rechazar *a priori* la incorporación a una fonoteca de referencia de grabaciones obtenidas con distintos sistemas, ya que permitiría la participación de mayor número de observadores en los programas de monitoreo (por ejemplo, la red de monitoreo inglesa permite la participación de observadores con todo el rango de variación de equipo de detección; BTC, 2010; Walsh *et al.*, 2004). Lo que es conveniente es incorporar en los metadatos información sobre las características de las técnicas de las grabaciones y evaluar la influencia de estos factores sobre la calidad de la identificación.

Otra cuestión técnica que influencia la eficacia y aplicabilidad de los métodos de identificación acústica se refiere a las metodologías de análisis de las grabaciones y extracción de parámetros de los pulsos de ecolocalización, y a los métodos estadísticos de clasificación. La mayoría de los estudios publicados a la fecha han recurrido a la extracción de parámetros mediante la localización manual de cursores sobre gráficos de oscilogramas, espectros de poder y sonogramas (o espectrogramas) de los sonidos. Esta técnica es

susceptible a diferencias en las medidas debido a la subjetividad del observador y variaciones en la técnica de representación, y está limitada a una corta serie de variables que pueden ser obtenidas en un tiempo razonable. Más recientemente, varios programas de análisis han incorporado algoritmos de localización automática de pulsos en las grabaciones y la medición automatizada de parámetros (ej. BatSound, Pettersson Elektronik), algunos de forma muy sofisticada (SASLab, Avisoft Bioacoustics; Sonobat, DnDesign).

Este desarrollo permite la obtención de un gran número de variables de los pulsos de una forma muy eficiente y estandarizada, eliminando la subjetividad del observador y aumentando la capacidad de clasificación de los sonidos. La herramienta para la identificación acústica de los murciélagos europeos y mexicanos recientemente publicada hace uso de estas capacidades (Walters *et al.*, 2012; Zamora-Gutierrez *et al.*, 2016). Los métodos estadísticos más utilizados para la clasificación de los sonidos de ecolocalización de murciélagos son el análisis discriminante, lineal o cuadrático, y los algoritmos de aprendizaje automatizado (Parsons y Szewczak, 2009; Walters *et al.*, 2012; Zamora-Gutierrez *et al.*, 2016). Sin embargo, más recientemente se han estado explorando métodos sinergéticos, máquinas de soporte vectorial o clasificadores de procesos gaussianos, los cuales podrían hacer un uso más eficiente de la información y clasificar más eficientemente los sonidos (Obrist *et al.*, 2004; Redgwell *et al.*, 2009; Stathopoulos *et al.*, 2014).

A pesar de las dificultades inherentes de este tipo de trabajos, en años recientes, un número creciente de investigadores y empresas consultoras de México han empezado a utilizar técnicas de detección acústica, lo cual ha permitido la obtención de información sobre varios aspectos de la ecología de una variedad de murciélagos insectívoros, demostrando la utilidad de estos métodos (Ávila-Flores y Fenton, 2005; Ávila-TorresAgatón y Guillén Servent, 2007; Briones-Salas *et al.*, 2013; Gómez-Naranjo, 2013; González-Terrazas *et al.*, 2016; Guillén-Servent, 2005; Guillén-Servent e Ibáñez, 2007; Ibáñez *et al.*, 1999; Ibáñez *et al.*, 2002; Ibáñez *et al.*, 2004; Ibáñez *et al.*, 2001; Ibarra-Alvarado, 2006; Ibarra-Alvarado y Guillén-Servent, 2005; López-Pérez, 2007; MacSwiney *et al.*, 2006; MacSwiney *et al.*, 2009;

MacSwiney *et al.*, 2008; Meneses Horán, 2013; Orozco-Lugo *et al.*, 2002; Orozco-Lugo *et al.*, 2013; Pech-Canché *et al.*, 2010; Ratcliffe *et al.*, 2004; Rizo-Aguilar, 2008; Rizo-Aguilar *et al.*, 2007; Rydell *et al.*, 2002; Smotherman y Guillén Servent, 2008; Torres-Morales, 2007; Stathopoulos *et al.*, 2014, Zamora-Gutierrez *et al.*, 2016, entre otros). Estos proyectos han proporcionado también conocimiento sobre las características de los sonidos de ecolocalización de los murciélagos mexicanos, el cual desafortunadamente permanece disperso. Por otro lado, el conjunto de profesionales familiarizados con la detección acústica ha alcanzado una masa crítica suficiente para plantearse la creación de una fonoteca de ámbito nacional que facilite la aplicación de las metodologías de detección acústica en proyectos de monitoreo por parte de académicos y agencias, sociedades y empresas relacionadas con la vida silvestre, y como para permitir el abordaje de un programa de monitoreo de ámbito nacional.

4.- OBJETIVOS

4.1. OBJETIVO GENERAL

Iniciar la conformación de una "fonoteca" de referencia de sonidos de ecolocalización de las especies de murciélagos con sonar basado en sonidos de alta intensidad presentes en el territorio mexicano, que contenga una representación adecuada de la variación individual y geográfica y analizar con herramientas estadísticas la variación intraespecífica (individual, entre jóvenes y adultos, sexual y geográfica), interespecífica, y entre métodos de grabación, para evaluar las posibilidades de discriminación de las especies emisoras a partir de un conjunto de datos cuantitativos obtenidos a partir del análisis de los pulsos de ecolocalización mediante un procedimiento estandarizado.

4.2. OBJETIVOS PARTICULARES

- 1.- Conformar una red de grupos de trabajo con personal capacitado, que obtenga grabaciones de referencia en las diferentes regiones del país, de forma que se consiga una cobertura adecuada del territorio nacional y de la diversidad de especies de murciélagos que alberga.
- 2.- Organizar cuatro talleres de entrenamiento e intercambio en las metodologías de captura de murciélagos insectívoros y de obtención de grabaciones, así como de los protocolos de incorporación de material a la fonoteca de referencia nacional. En estos talleres se entrenará personal que conformará o completará grupos de trabajo regionales.
- 3.- Reunir, organizar y analizar las grabaciones acústicas existentes de murciélagos del país, y que tengan potencial para ser incluidas en la fonoteca de referencia, evaluando este potencial mediante la comparación estadística entre métodos de grabación y condiciones de obtención de las grabaciones.
- 4.- Definir un diseño de muestreo que garantice una cobertura adecuada de las especies a lo

largo de su distribución geográfica en la colección de grabaciones de referencia.

- 5.- Diseñar un procedimiento de validación y de ingreso de datos de detección acústica a la fonoteca y al Sistema Nacional de Información sobre Biodiversidad (SNIB).
- 6.- Iniciar la conformación de la fonoteca nacional integrada por grabaciones obtenidas previamente y grabaciones de nueva obtención durante la primera fase de trabajo de campo, empleando los procedimientos de validación diseñados durante el proyecto.
- 7.- Diseñar los procedimientos de comparación estadística entre métodos de obtención de grabaciones, técnicas de detección y grabación, sexos, edades, regiones y especies, que permitan evaluar las grabaciones preexistentes, informar sobre los procedimientos más adecuados para obtener las nuevas grabaciones, apoyar los procedimientos de validación para el ingreso de grabaciones en la fonoteca nacional, y evaluar de manera preliminar la factibilidad de discriminar entre especies.

5.- MÉTODOS UTILIZADOS

5.1. Conformación de una red de grupos de trabajo

5.1.1.- Organización general del proyecto

Se realizaron dos reuniones generales del proyecto para organizar la logística, planificar los trabajos de campo, definir los sistemas de grabación, digitalización y análisis de sonidos, y establecer la distribución geográfica de los sitios de muestreo.

Primera reunión de trabajo: se realizó en las instalaciones de la Benemérita Universidad Autónoma de Puebla en la Ciudad de Puebla de los Ángeles, Puebla, el 27 de octubre del 2014, en el marco del XI Congreso Nacional de Mastozoología (Fig. 1). En esta reunión aún no se firmaba el convenio con CONABIO; sin embargo, hay que destacar que fue aquí cuando se eligieron a los coordinadores general y regionales y se tomaron los primeros acuerdos fundadores del proyecto (Véase Anexo 1).

Segunda reunión de trabajo: se realizó en el Instituto de Biología de la Universidad Nacional Autónoma de México en la Ciudad de México, el día 29 de abril de 2016 (Fig. 2). En esta reunión se ratificaron a los coordinadores: el general, los técnicos y los regionales. Se adiciona a la coordinación técnica la Dra. Verónica Zamora Gutiérrez, que recién había regresado a México después de haber obtenido su doctorado. Se establecieron compromisos sobre las actividades a realizar, entre ellos, la realización de la primera reunión-taller, a celebrarse en la Mancha, Veracruz. Se determinó el nombre de la red como SONOZOTZ-AMMAC (Véase Anexo 2).

Durante la fase de planificación y organización del proyecto, el grupo de trabajo estuvo conformado por investigadores y estudiantes de diferentes instituciones del país cuya participación fue crucial para el arranque y adecuado funcionamiento del proyecto. Este grupo fundador estuvo integrado por 18 investigadores de diversas instituciones del país (Cuadro 1).

Figura 1. Primera reunión de trabajo en las instalaciones de la Benemérita Universidad Autónoma de Puebla, Puebla.

Cuadro 1. Participantes miembros de la Asociación Mexicana de Mastozoología, A.C. dentro de la propuesta inicial del proyecto.

Grado	Nombre	Institución
Dr.	Rafael Ávila Flores	Universidad Juárez Autónoma de Tabasco.
		Centro Interdisciplinario de Investigación para el
Dr.	Miguel Ángel Briones Salas	Desarrollo Integral Regional IPN Unidad Oaxaca (CIIDIR IPN)
Dra.	Patricia Cortés Calva	Centro de Investigaciones Biológicas del Noroeste S. C. (CIBNOR)
		Centro Interdisciplinario de Investigación para el
Dra.	Margarita García Luis	Desarrollo Integral Regional IPN Unidad Oaxaca (CIIDIR IPN)
Dr.	Antonio Guillén Servent	Instituto de Ecología A.C. (CONACYT), Xalapa, Veracruz
		Instituto Manantlán de Ecología y Conservación de
Dr.	Luis Ignacio Íñiguez Dávalos	la Biodiversidad. Departamento de ecología y
		recursos naturales
		Centro Interdisciplinario de Investigación para el
Dra.	Celia López González	Desarrollo Integral Regional IPN Unidad Durango (CIIDIR IPN)
Dr.	Ricardo López Vilchis	Universidad Autónoma Metropolitana – Iztapalapa
Dra.	Cristina Mac Swiney González	Centro de Investigaciones Tropicales, Universidad Veracruzana (CITRO)
M. en C.	Matías Martínez Coronel	Universidad Autónoma Metropolitana – Iztapalapa
		Departamento de Ecología Evolutiva. Centro de
M. en C.	Carmen L. Orozco Lugo	Investigación en Biodiversidad y Conservación -
IVI. EII C.	Carmen L. Orozco Lugo	Universidad Autónoma del Estado de Morelos
		(CIByC– UAEM)
Dr.	Juan Pech Canché	Facultad de Ciencias Biológicas y Agropecuarias -
	Juan Feen Canone	Tuxpan, Universidad Veracruzana.
Dr.	Víctor Sánchez-Cordero Dávila	Instituto de Biología de la Universidad Nacional
		Autónoma de México (UNAM)
Dra.	Celia I. Sélem Salas	Departamento de Zoología de la Universidad
		Autónoma De Yucatán (UADY)
M. en C.	Javier E. Sosa Escalante	Centro para la Gestión de la Sustentabilidad
		(CEGES)
Dr.	Jorge A. Vargas Contreras	Universidad Autónoma de Campeche – UAC

Grado	Nombre	Institución
M. C.	Verónica Zamora Gutiérrez	Conservation Science Group Department of Zoology, University of Cambridge

Figura 2. Segunda reunión de trabajo realizada el 29 de abril de 2016, en el Instituto de Biología de la UNAM en la Ciudad de México.

El organigrama del proyecto quedó conformado de la siguiente manera:

a) Responsable técnico ante la CONABIO:

Dr. Miguel Ángel Briones Salas

Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, Instituto Politécnico Nacional.

b) Coordinadoras técnicas:

Dra. María Cristina MacSwiney González

Centro de Investigaciones tropicales, Universidad Veracruzana.

Dra. Verónica Zamora Gutiérrez

Cátedra Conacyt; Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Durango, Instituto Politécnico Nacional.

c) Técnicos:

M. en C. Fernando Montiel Reyes

Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Durango, Instituto Politécnico Nacional.

Dra. Margarita García Luis

Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, Instituto Politécnico Nacional.

5.1.2. Área de estudio: Regionalización del país.

La propuesta pretendía abarcar todo el territorio mexicano, para lo cual se propuso una división del país en regiones más o menos naturales y relativamente seguras que pudieran contener faunas diferenciadas y logísticamente manejables: 1)Región Californiana (Baja California, Baja California Sur y Sonora); 2) región Noroeste (Durango, Sinaloa y Chihuahua); 3) región Occidente (Colima, Nayarit y Jalisco); 4) región Oriente (Puebla, Tlaxcala y Veracruz): 5) región Centronorte (Aguascalientes, Guanajuato, San Luis Potosí, Nuevo León y Zacatecas); 6) región Centrosur (Estado de México, Morelos, Hidalgo y

Querétaro) y 7) región Sureste (Campeche, Quintana Roo y Yucatán) y región Suroeste (Chiapas, Oaxaca y Tabasco) (Fig. 3).

Figura 3. Área de estudio. Propuesta de regionalización del país en estados para el desarrollo del proyecto.

5.1.3. Grupos de trabajo: Coordinadores regionales.

Con base en la regionalización propuesta, se establecieron ocho grupos de trabajo con un coordinador regional que se responsabilizó de la organización del trabajo del grupo regional y que sirva de representante del trabajo realizado en la parte correspondiente del país en las reuniones generales del proyecto (Cuadro 2). Los grupos tuvieron la posibilidad de ir creciendo con estudiantes y más personal entrenado en los talleres de capacitación. La región Noreste del país quedó por el momento sin cobertura debido a la situación de inseguridad que hace demasiado peligroso realizar trabajo de campo nocturno en la zona.

Cuadro 2. Coordinadores regionales del proyecto.

Regiones	Coordinadores
1 Región Californiana	Dra. Verónica Zamora Gutiérrez
	Centro Interdisciplinario de Investigación para el
	Desarrollo Integral Regional, Unidad Durango,
	Instituto Politécnico Nacional (CIDIIR Durango-IPN)
	Dra. Patricia Cortés Calva
	Centro de Investigaciones Biológicas del Noroeste S.C.
	(CIBNOR)
2 Región Noroeste	Dra. Celia López González y Dra. Verónica Zamora
	Gutiérrez
	Centro Interdisciplinario de Investigación para el
	Desarrollo Integral Regional, Unidad Durango,
	Instituto Politécnico Nacional (CIDIIR Durango-IPN)
3 Región Occidente	Dr. Luis Ignacio Íñiguez Dávalos
	Centro Universitario de la Costa Sur, Universidad de
	Guadalajara (CUCSUR-U. de G.)
4 Región Oriente	Dra. Cristina Mac Swiney González

	Centro de Investigaciones tropicales, Universidad
	Veracruzana (CITRO-UV)
5 Región Centronorte	Dr. Jorge Ortega Reyes
	Escuela Nacional de Ciencias Biológicas, Instituto
	Politécnico Nacional (ENCB, IPN)
	Dra. Melina Del Real Monroy
	Universidad Autónoma de Zacatecas (UAZ)
6 Región Centrosur	Dr. José Antonio Guerrero Enríquez
	Universidad Autónoma del Estado de Morelos (UAEM)
7 Región Sureste	Dra. Celia I. Sélem Salas
	Universidad Autónoma de Yucatán (UADY)
	Cristina Mac Swiney González
	Centro de Investigaciones Tropicales, Universidad
	Veracruzana (CITRO, UV)
8 Región Suroeste	Dr. Rafael Ávila Flores
	Universidad Juárez Autónoma de Tabasco (UJAT)

5.2. Talleres de entrenamiento e intercambio de metodologías

Se realizaron cuatro talleres regionales del proyecto para discutir, analizar, definir y refinar el protocolo de trabajo a utilizar durante las actividades de campo

5.2.1. Primera reunión-taller general del proyecto.

Esta primera reunión-taller, se llevó a cabo en la estación Biológica La Mancha, del Instituto de Ecología, A.C., en La Mancha, Veracruz, del 7 al 10 de junio de 2016. Durante este taller, se realizaron actividades teóricas y prácticas en donde: 1) se compartieron los fundamentos de acústica y biología de quirópteros necesarios para participar en el proyecto; 2) se practicaron los métodos de captura de murciélagos insectívoros y su identificación taxonómica; 3) se definieron y practicaron las técnicas de obtención y análisis de grabaciones de referencia; 4) se proporcionó entrenamiento en el uso del equipo específico del proyecto (detectores de ultrasonidos UltraSoundGate 116Hn con micrófono condensador de alta calidad de Avisoft Bioacoustics) y 5) se estandarizaron los procedimientos de uso del equipo de detección acústica. En el taller también se ofreció entrenamiento básico en el uso de los programas BatSound (Pettersson Elektronik AB), que fue empleado para la revisión y edición de grabaciones (Véase Anexo 3).

5.2.2. Segundo taller regional-Norte.

El segundo taller regional reunió a los participantes de las regiones Noroeste y

Californiana y se llevó a cabo en las instalaciones del Centro Interdisciplinario de

Investigación para el Desarrollo Integral Regional, Unidad Durango (CIIDIR, Durango),

Instituto Politécnico Nacional, en la ciudad de Durango, Durango, del 2 al 4 de septiembre de

2016. Fue la primera vez que se presentó al personal asistente el protocolo de trabajo y se

aplicó en campo. Se realizaron sobre esta versión algunas modificaciones con base en las

experiencias adquiridas durante el desarrollo mismo del taller. Se realizaron actividades de

campo y se grabaron los ejemplares capturados (Véase Anexo 4).

5.2.3. Tercer taller regional-Sur.

El tercer taller regional se llevó a cabo en las instalaciones del Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca (CIIDIR, Oaxaca), Instituto Politécnico Nacional, en la ciudad de Oaxaca, Oaxaca, del 8 al 10 de septiembre de 2016. En este taller participaron investigadores y estudiantes de las regiones Sureste y Suroeste. Durante este encuentro se presentó el protocolo de trabajo mejorado durante el taller regional-Norte. Se realizaron actividades de campo y se grabaron los ejemplares capturados (Véase Anexo 5).

5.2.4. Cuarto taller regional-Centro.

El taller se realizó del 22 al 24 de septiembre de 2016, en las instalaciones del Centro de Investigación en Biodiversidad y Conservación (CIByC) de la Universidad Autónoma del Estado de Morelos (UAEM). En este taller participaron las regiones Centronorte, Centrosur, Occidente y Oriente. Al igual que en los talleres anteriores, se presentó a los participantes el protocolo de trabajo y se realizaron sesiones prácticas para la captura, muestreo y grabación de ejemplares capturados in situ (Véase Anexo 6).

5.3. Obtención de datos y grabaciones

Las salidas de campo se llevaron a cabo entre el 7 de junio de 2016 y el 17 de diciembre de 2017. En cada región fueron muestreadas al menos 8 áreas de interés biológico procurando en todo momento maximizar la cobertura geográfica del muestreo. En cada sitio fueron establecidos uno o más puntos de muestreo (referidos en nuestro protocolo como localidades) en los que se muestreó la comunidad de murciélagos. Las localidades pudieron incluir puntos en el espacio definidos por una coordenada única (por ejemplo, la entrada de

un refugio, un estanque, un punto en el sendero, un cruce en el arroyo, etc.) o un área pequeña (generalmente menor a 0.5 km²) en la que se establecieron dos o más puntos de captura cercanos entre sí (por ejemplo, un fragmento pequeño de vegetación, un parque, la porción de una reserva, un segmento de arroyo, una finca, las orillas de un poblado, etc.).

En cada localidad se obtuvo una serie de datos y muestras biológicas siguiendo de manera rigurosa el protocolo definido por el grupo de trabajo (véase Anexo 7). Cuando fue posible, se colocó un registrador automatizado de temperatura y humedad (*datalogger*) para obtener datos ambientales durante el periodo de muestreo en intervalos de 15 min. En cada punto de captura (uno o más por localidad) se colocaron redes de seda japonesa o redes de monofilamento de 6, 9 o 12 m en sitios que maximizaran la probabilidad de captura, como son los caminos, senderos, arroyos, bordes de bosque, estanques y refugios (cuevas, grietas en paredes rocosas, árboles, edificios y otras estructuras humanas). De manera estándar, las redes fueron colocadas a 30 cm del suelo, aunque la altura específica pudo variar dependiendo de las características del sitio. En algunos casos, especialmente en la entrada de cuevas, se colocó una trampa de arpa para facilitar la manipulación de un alto número de individuos. En las cámaras pequeñas de los refugios, las redes de golpe fueron una herramienta auxiliar para la captura de murciélagos.

Los animales capturados fueron identificados mediante el uso de literatura y claves taxonómicas especializadas en murciélagos o mamíferos (Medellín *et al.*, 2008, Reid, 2009, Álvarez-Castañeda, 2017). De cada individuo capturado se colectaron los datos estándares que incluyen longitud del antebrazo, peso corporal, sexo, edad y condición reproductiva. Una vez identificados, los individuos fueron cuidadosamente manipulados para ser fotografiados desde diferentes ángulos (rostro, cuerpo completo, ala extendida y rasgos característicos de la especie). Posteriormente, se colectó una muestra de tejido alar para generar un banco de información genética resguardada en la Colección Regional Durango (Mammalia) del CIDIIR-Durango. Finalmente, los individuos plenamente identificados a nivel de especie fueron manipulados con diferentes técnicas de liberación (ver Anexo 7) para la grabación de sus

sonidos de ecolocalización en fase de búsqueda (generalmente al momento de ser liberados).

La identificación taxonómica fue uno de los pasos más críticos durante el trabajo de campo, puesto que cada grabación de referencia estaría asociada a individuos identificados con una certeza mínima del 80%. Cuando no fue posible identificar al ejemplar de manera confiable en campo, éste fue colectado para ser plenamente identificado a partir de sus medidas y características craneales y postcraneales en la Colección de Mamíferos CIB (CIBNOR). De manera adicional, se colectaron muestras de tejido en *RNA- later* para realizar análisis genéticos confirmatorios de la identidad del individuo.

6. RESULTADOS

6.1. Protocolo de muestreo

El protocolo general de trabajo en el cual se basó la obtención de los llamados, ejemplares y tejidos y sus metadatos correspondientes fue modificado como resultado de la experiencia en los talleres regionales y los muestreos iniciales de campo. En este informe se entrega la versión final del protocolo de muestreo (v. 8.0) (Véase Anexo 7).

El protocolo para el muestreo de ejemplares y grabaciones siguió las especificaciones de los términos de referencia (Documento Anexo 3 del Convenio CONABIO-AMMAC) establecidos para la elaboración de la Fonoteca SONOZOTZ-AMMAC, manteniendo una estructura compatible con la plataforma de CONABIO en la que fueron integrados los datos. Este protocolo fue utilizado en todas las colectas de sonidos y ejemplares durante el desarrollo del proyecto (Véase el Anexo 7).

Los objetivos del protocolo fueron:

- 1) Capturar e identificar murciélagos insectívoros.
- 2) Obtener grabaciones de calidad de ultrasonidos de los individuos capturados.
- 3) Obtener fotografías de los mismos para la fototeca de CONABIO.
- 4) Preservar muestras selectas de tejido de los animales capturados en colecciones mastozoológicas autorizadas.
- 5) Preservar ejemplares de referencia selectos en forma de "piel y cráneo" en colecciones mastozoológicas autorizadas.
- 6) Recolectar información geográfica para la elaboración del mapa digital para CONABIO.
- 7) Crear archivos digitales de llamados de ecolocalización y metadatos asociados, organizados y etiquetados para permitir su ingreso a la plataforma que constituirá la fonoteca de uso libre de CONABIO.

6.2. Informe de actividades de los talleres realizados

6.2.1. Resultados de la primera reunión-taller general del proyecto.

Se llevó a cabo en la estación Biológica La Mancha, del Instituto de Ecología, A.C., en la Mancha, Veracruz, del 7 al 10 de junio de 2016 (Fig. 3). La lista de los participantes que elaboraron el protocolo general del proyecto se presenta en el Anexo 7. Entre los resultados y acuerdos más importantes se pueden citar los siguientes:

- a) Se discutió, elaboró y presentó la propuesta del protocolo de trabajo.
- b) Se agregaron como co-coordinadores regionales a la Dra. Melina del Real (en apoyo al Dr. Jorge Ortega, región Centronorte) y la Dra. Verónica Zamora (en apoyo a la Dra. Celia López, región Noroeste).
- c) Se informó de la salida del Dr. Antonio Guillen como coordinador técnico, responsabilidad que compartía con la Dra. María Cristina Mac Swiney González. Se retira de la coordinación

técnica debido a los compromisos laborales dentro de su Institución, dejando temporalmente vacante el puesto de co-coordinador. La mayoría de los participantes apoyaron su decisión.

- d) Se presentó y discutió el protocolo de toma de muestras genéticas y remisión de muestras genéticas.
- e) Se valoró la practicidad y conveniencia del protocolo (preliminarmente definido) mediante la colecta de ejemplares en campo (Fig. 4).
- f) Se propusieron cambios y modificaciones al proyecto, ajuste de personal (como lo señalado en incisos anteriores), y obtención de información y ajuste de presupuesto.

Como resultado de este taller se elaboraron los formatos de campo para el registro de información geográfica y ambiental, de los ejemplares, de los llamados y ejemplares colectados (véase Anexo 7).

Figura 3. Participantes del Primer taller regional, realizado en la Mancha, Ver.

Figura 4. Actividades de campo durante el desarrollo del curso taller en La Mancha, Ver.

6.2.2. Segundo taller regional-Norte.

El segundo taller regional se llevó a cabo en las instalaciones del Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Durango (CIIDIR, Dgo.), Instituto Politécnico Nacional, en la ciudad de Durango, Durango, del 2-4 septiembre 2016 (Fig. 5, 6 y 7).

Se presentó por primera vez al personal asistente el protocolo de trabajo. Se realizaron sobre esta versión algunas modificaciones al mismo, que se incorporaron a la versión presentada en este informe. Se realizaron actividades de campo y se grabaron los ejemplares capturados (véase Anexo 4). Participaron en el taller 13 personas de la región Norte (Cuadro 3)

Cuadro 3. Participantes en el segundo taller regional Norte.

Nombre	Institución a la que pertenecen
M en C. Aldo Antonio Guevara Carrizales	Universidad Autónoma de Baja California.
Dra. Celia López González	CIIDIR Durango, IPN.
Dra. Verónica Zamora Gutiérrez	CIIDIR Durango, IPN.
M en C. Alfredo Leal Sandoval	Universidad Autónoma de Sinaloa.
M en C. Abraham Lozano Mendoza	CIIDIR Durango, IPN.
P. de Biol. Ángel García Rojas	Instituto Tecnológico del Valle del Guadiana.
Dr. Jorge Ortega Reyes	Escuela Nacional de Ciencias Biológicas, IPN.
Dra. Melina Del Real Monroy	Universidad Autónoma de Zacatecas.
Dra. Cynthia Elizalde Arellano	Escuela Nacional de Ciencias Biológicas, IPN.
Dr. Juan Carlos López Vidal	Escuela Nacional de Ciencias Biológicas, IPN.
M. en C. Juan Cruzado Cortés	EEBIO (Estudios Especializados en Biodiversidad).
P. de B. Edgar Guillermo Gutiérrez González	Escuela Nacional de Ciencias Biológicas, IPN.
M. en C. Guillermo Vázquez Domínguez	Instituto de Investigaciones en Ecosistemas y Sustentabilidad, UNAM.

Figura 5. Actividades desarrolladas durante el segundotaller regional, en las instalaciones del CIIDIR, Unidad Durango, IPN.

Figura 6. Ejemplar colectado durante las actividades de campo realizadas en el segundo taller regional en la ciudad de Durango, Durango.

Figura 7. Actividades en el aula del segundo taller regional desarrollado en la ciudad de Durango, Durango.

6.2.3. Tercer taller regional-Sur.

El tercer taller regional se llevó a cabo en el CIIDR, Unidad Oaxaca, Instituto Politécnico Nacional, en la ciudad de Oaxaca, Oaxaca, del 8 al 10 de septiembre de 2016. Se presentó al personal asistente el protocolo de trabajo (Fig. 8) y se realizaron actividades de campo (Fig. 9) que incluyeron la grabación de los ejemplares capturados (véase Anexo 5). Participaron dentro del taller 11 personas de la región Sur (Cuadro 4).

Cuadro 4. Nombre de los participantes en el tercer taller regional Sur.

Nombre	Institución
Luis Arturo Hernández Mijangos	Tierra Verde Naturaleza y Cultura A. C.
	(Chiapas).
Matías Martínez Coronel	Universidad Autónoma Metropolitana
	Unidad Iztapalapa.
Miguel Ángel Briones Salas	CIDIIR Oaxaca, IPN.
Margarita García Luis	CIDIIR Oaxaca, IPN.
Rodrigo García Morales	Centro del Cambio Global y la
	Sustentabilidad en el Sureste, A.C.
Alba Zulema Rodas Martínez	Universidad Juárez Autónoma de Tabasco.
Lucio Pérez Pérez	Universidad Juárez Autónoma de Tabasco
Rafael Ávila Flores	Universidad Juárez Autónoma de Tabasco.
Concepción López Tellez	Benemérita Universidad Autónoma de
	Puebla.
Fernando Javier Montiel	CIDIIR Durango, IPN.
Verónica Zamora Gutiérrez	CIDIIR Durango, IPN.

Figura 8. Actividades desarrolladas durante el tercer taller regional, en las instalaciones del CIIDIR, Unidad Oaxaca, IPN.

Figura 9. Actividades de campo para la colecta y grabación de murciélagos durante el tercer taller regional en Oaxaca, Oaxaca.

6.2.4. Cuarto taller regional-Centro.

El taller se realizó del 22 al 24 de septiembre de 2016, en las instalaciones del Centro de Investigación en Biodiversidad y Conservación (CIByC) de la Universidad Autónoma del Estado de Morelos (UAEM). En este taller participaron las regiones Centro, Occidente y Oriente. Las sesiones teóricas se llevaron a cabo en el auditorio del CIByC. El taller tuvo una asistencia de 32 personas en las siguientes categorías de participación (véase Anexo 6).

Los principales resultados de este taller fueron:

a) Presentación ejecutiva del proyecto: Exposición de los objetivos y metas del taller. Se presentó el origen del proyecto así como los objetivos, productos generales esperados, estructura y organización del mismo. Se informó de los avances del proyecto a la fecha del taller (Fig. 10).

- b) Compromisos y beneficios para los colaboradores.
- c) Nociones básicas de ecolocalización, fundamentos de acústica.
- d) Presentación de protocolos, localidad y captura.
- e) Grabación y uso de software/equipo (Fig. 11).
- c) Práctica de captura e implementación de protocolos. Se colocaron redes de niebla de monofilamento sobre cuerpos de agua (estanques) donde los murciélagos bajan a beber agua tras la puesta del sol (Fig. 12). Una vez capturados los individuos se practicó el procesamiento de los mismos y el empleo de las hojas de datos del proyecto para anotar la información (Fig. 13).

Se capturaron individuos de *Molossus sinaloae* (Fig. 14), se llevó a cabo la toma de datos morfométricos y la identificación de los individuos y posteriormente la liberación y grabación de los mismos (Fig. 15 y 16).

Figura 10.- Presentación del proyecto en el auditorio del CIByC, con los colaboradores de las tres regiones participantes en el Taller Centro.

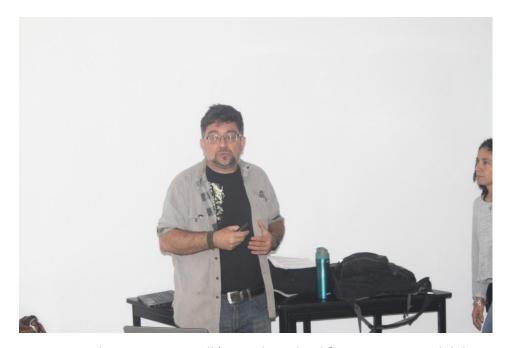


Figura 11. El Dr. Antonio Guillén, explicando el funcionamiento del detector y software.

Figura 12. Colocación de redes de niebla sobre estanques en el parque Solidaridad", para la captura de murciélagos.

Figura 13.- En la imagen el Dr. Gerardo Sánchez y los estudiantes Ariana Lira y Jonatan Romero, identifican, miden y anotan los datos de uno de los individuos capturados.

Figura 14.- Individuo de *Molossus sinaloae,* capturado durante la sesión de captura de murciélagos.

Figura 15.- Liberación de individuo de *M. sinaloae* en una tirolesa.

Figura 16. Grabación de murciélagos con el equipo del proyecto.

d) se presentaron los protocolos de: Fotografía y morfometría (Dr. Ignacio Iñiguez), toma de muestras y preparación de ejemplares (Figs. 17) y también se instruyó en el uso de software Batsound y Sonobat para la edición de pulsos y secuencias. Finalmente se tomaron fotografías con todos los asistentes al taller (Fig. 18).

Figura 17.- El Dr. Antonio Guillén muestra a los participantes el tipo de material necesario para la toma de muestras de tejido.

Figura 18.- Fotografía de los asistentes al Taller Regional Centro

6.3. Informe de actividades de las Salidas de campo.

Ejemplares colectados

Se colectaron un total de 1657 individuos. De éstos, la mayoría pertenecen a la especie *Myotis velifer* (*n*= 189), seguido de las especies *Pteronotus parnellii* (*n*= 162) y *Tadarida brasiliensis* (*n*= 155). Diez especies se pudieron colectar solamente en una ocasión (e.g. *Perimyotis sullfavus, Myotis occultus, Idionycteris phyllotis*) (Cuadro 5).

Al inicio del proyecto se había estimado, de acuerdo con modelos de distribución potencial, la posibilidad de capturar 101 especies (CONABIO, datos no publicados). De acuerdo con estos datos, en tres regiones se pudieron capturar el 50% o más de las especies potenciales (regiones 5, 6 y 7), mientras que en 5 regiones (1, 2, 3, 4, y 8), se capturaron abajo del 50% de las especies potencialmente presentes (Fig. 19).

La familia con el mayor número de ejemplares capturados fue Vespertilionidae (n=

741), seguida de la familia Mormoopidae (n= 415); mientras que la familia con el menor número de ejemplares capturados fue Noctilionidae (n= 10) (Fig. 20).

En cuanto a las regiones, en la 2 (Noroeste), se colectaron 397 ejemplares, seguido de la región 8 (Suroeste) con 245 ejemplares. Las regiones con el menor número de individuos colectados fueron: la región 3 (Occidente) con 130 ejemplares y la 1 (Californiana) con 137 ejemplares (Figura 21).

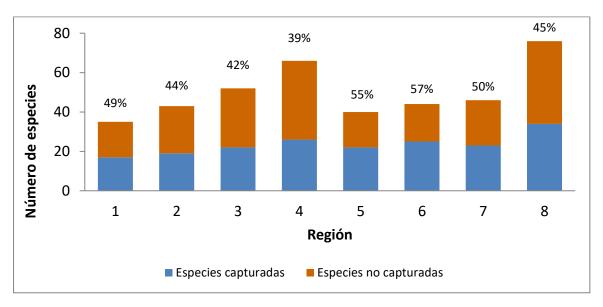


Figura 19. Número de especies capturadas y no capturadas potencialmente presentes a nivel regional. En la parte superior de cada barra se muestra el porcentaje de las especies potencialmente presentes que fueron grabadas. Los números indican las regiones, donde 1: Californiana; 2: Noroeste; 3) Occidente; 4) Oriente; 5) Centronorte; 6) Centrosur; 7) Sureste; 8) Suroeste.

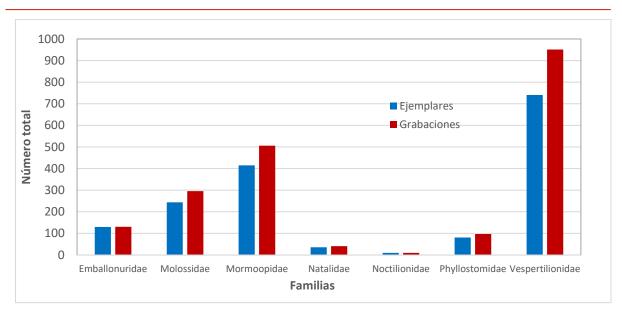


Figura 20. Número de ejemplares y grabaciones por familia obtenidas en cada una de las ocho regiones trabajadas durante el desarrollo del proyecto.

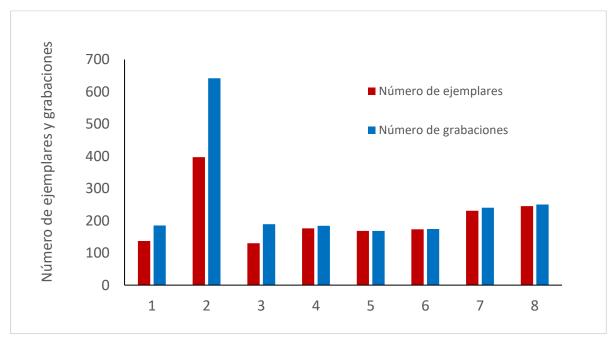


Figura 21. Número de ejemplares y grabaciones obtenidas en cada una de las ocho regiones trabajadas durante el desarrollo del proyecto. Los números indican las regiones, donde 1: Californiana; 2: Noroeste; 3) Occidente; 4) Oriente; 5) Centronorte; 6) Centrosur; 7) Sureste; 8) Suroeste.

Cuadro 5. Número de llamados y ejemplares grabados por especie. G= Número de grabaciones totales. E= Número de ejemplares grabados.

	Regić	in 1	Regi	ón 2	Regio	ón 3	Regi	ión 4	Regi	ón 5	Regi	ón 6	Regi	ón 7	Regi	ón 8
Familia/Especie	G	Е	G	Е	G	Е	G	Е	G	Е	G	Е	G	Е	G	Ε
Emballonuridae																
Balantiopteryx io															9	9
Balantiopteryx plicata					13	13	5	4	10	10	9	9			5	5
Centronycteris centralis																
Diclidurus albus																
Peropteryx kappleri															5	5
Peropteryx macrotis													7	7	15	15
Rhynchonycteris naso													6	6	16	16
Saccopteryx bilineata							9	9					13	13	9	9
Saccopteryx leptura																
Molossidae																
Cynomops mexicanus																
Eumops auripendulus																
Eumops nanus													1	1		
Eumops glaucinus																
Eumops hansae																
Eumops perotis			1	1												
Eumops underwoodi											1	1				
Molossus alvarezi													5	5		
Molossus aztecus																
Molossus coibensis																
Molossus molossus					1	1									2	2
Molossus pretiosus																
Molossus rufus							14	14	7	7			22	22	11	11
Molossus sinaloae											7	7				
Nyctinomops aurispinosus	3	3														
Nyctinomops femorosaccus									2	2						
Nyctinomops laticaudatus													10	10		
Nyctinomops macrotis											2	2				
Promops centralis																
Tadarida brasiliensis	34	26	119	75	7	7			17	17	17	17			13	13
Mormoopidae																

	Pa-! 4	in 1	Dee'	ón 2	P'	án 2	D'	ár 1	Da='	ár F	Da = '	ár C	D'	ár 7	D'	ár o
Familia/Especie	Regió G	on 1 E	Regi G	on 2 E	Regio	on 3 E	Keg i G	on 4	Regi G	on 5 E	Kegi G	on 6 E	Keg i G	on /	Regi G	ón 8 E
Mormoops megalophylla	G		22	11	50	29	11	11	16	16	10	10	21	21	18	17
Pteronotus davyi			~~	11	33	18	12	12	2	2	10	10	26	24	33	32
Pteronotus gymnonotus					33	10	12	12	2	۷			20	4 4	33 8	32 7
Pteronotus parnellii	18	9			34	24	30	25	19	19	27	26	43	39	20	20
	10	9			22	12	12	12	5	5	21	20	10	10	4	4
Pteronotus personatus Natalidae					22	12	12	12	5	3			10	10	4	4
Natalus mexicanus			18	13	2	2	3	3			10	10	8	8		
Noctilionidae					_	_							Ü			
Noctilio albiventris																
Noctilio leporinus													10	10		
Phyllostomidae																
Chrotopterus auritus													4	4	3	3
Glyphonycteris sylvestris																-
Lampronycteris brachyotis													2	1		
Lonchorhina aurita													2	1		
Lophostoma brasiliense																
Lophostoma evotis																
Macrophyllum macrophyllum																
Macrotus californicus	27	25	26	16	4	2										
Macrotus waterhousii							2	2			2	2				
Micronycteris microtis							1	1	2	2	1	1	2	2	1	1
Micronycteris schmidtorum																
Mimon cozumelae													7	7	4	4
Mimon crenulatum																
Phyllostomus discolor															1	1
Phyllostomus stenomops																
Trachops cirrhosus													4	4	1	1
Trinycteris nicefori																
Tonatia saurophila																
Vampyrum spectrum															1	1
Thyropteridae																
Thyroptera tricolor																
Antrozous pallidus	1	1	78	52							1	1				
Bauerus dubiaquercus					1	1										
Vespertilionidae																
Corynorhinus mexicanus					2	2	6	6								

	Regió	in 1	Regi	ón 2	Regio	ón 3	Regi	ión 4	Regi	ión 5	Regi	ión 6	Regi	ión 7	Regi	ión 8
Familia/Especie	G	Е	G	Е	G	Е	G	Е	G	Е	G	Е	G	Е	G	Е
Corynorhinus townsendii			10	5					14	14	11	11			1	1
Eptesicus brasiliensis									1	1					2	2
Eptesicus furinalis					1	1							9	9	6	6
Eptesicus fuscus	20	14	47	26	3	3	3	3	4	4	4	4			3	3
Euderma maculatum																
Idionycteris phyllotis															1	1
Lasionycteris noctivagans																
Lasiurus blossevillii	5	3	4	3	4	4	2	2			2	2			2	2
Lasiurus borealis																
Lasiurus cinereus	3	2	10	6			4	4	1	1	10	10			1	1
Lasiurus ega							1	1	2	2			6	5	1	1
Lasiurus intermedius					2	2					2	2				
Lasiurus xanthinus	5	3	2	1	1	1										
Myotis albescens							6	6								
Myotis auriculus	2	1	4	2					3	3						
Myotis californicus	2	2	7	5	1	1	6	6	20	20	8	8			2	2
Myotis elegans							2	2							5	5
Myotis evotis																
Myotis findleyi																
Myotis fortidens					1	1									6	5
Myotis keaysi							5	5	2	2	11	11	11	11	4	4
Myotis melanorhinus			16	10			1	1	5	5						
Myotis nigricans					2	1	29	27			5	5			21	21
Myotis occultus					1	1										
Myotis peninsularis																
Myotis planiceps																
Myotis thysanodes			2	1	1	1	2	2								
Myotis velifer	13	7	213	124	1	1	9	9	23	23	14	14			12	11
Myotis vivesi	19	19														
Myotis volans	17	9	4	3							2	2				
Myotis yumanensis	2	1	51	35					11	11	8	8				
Nycticeius humeralis																
Parastrellus hesperus	3	2	8	8							3	3				
Perimyotis subflavus									1	1						
Rhogeessa aeneus													11	11		
Rhogeessa alleni							1	1			1	1				

Informe Final.

Compilación de fonoteca de referencia de los murciélagos insectívoros de México: Fase I.

	Regió	n 1	Regi	ón 2	Regio	ón 3	Regi	ón 4	Regi	ón 5	Regi	ón 6	Regi	ón 7	Regi	ón 8
Familia/Especie	G	Ε	G	Е	G	Ε	G	Ε	G	Е	G	Е	G	Е	G	Е
Rhogeessa genowaysi																
Rhogeessa gracilis																
Rhogeessa mira																
Rhogeessa parvula	11	10			2	2	1	1			4	3				
Rhogeessa tumida							7	7	1	1	2	2			4	4

6.4. Mapa de las localidades muestreadas

Se logró cubrir el 100% de las regiones propuestas originalmente (Fig. 22). Las regiones del centro y sur de México tuvieron un mayor esfuerzo de muestreo debido a la estacionalidad menos marcada de sus ecosistemas, en comparación con el norte de nuestro país que presentan ecosistemas con inviernos y veranos más contrastantes. La extrema estacionalidad del norte de México, especialmente que cuenta con inviernos muy fríos, limita la realización de los muestreos ya que la actividad de los murciélagos es baja y en muchas localidades nula. Las bajas temperaturas invernales de estas zonas del país obligan a las especies de murciélagos que las habitan a migrar o hibernar para sobrevivir. Sin embargo, desde el mes de mayo las temperaturas se estabilizan y al predominar las noches mayormente cálidas, los muestreos se intensificaron en estas áreas para completar los sitios comprometidos.

Figura 22. Localidades muestreadas en relación a las ocho regiones de coordinación para los muestreos.

Para el caso de las localidades muestreadas, en la región Noroeste (2), se visitaron 36 localidades, seguida de la región suroeste con 34 localidades. La región con el menor número de localidades visitadas fue la Occidente (3) con 11 (Fig. 23).

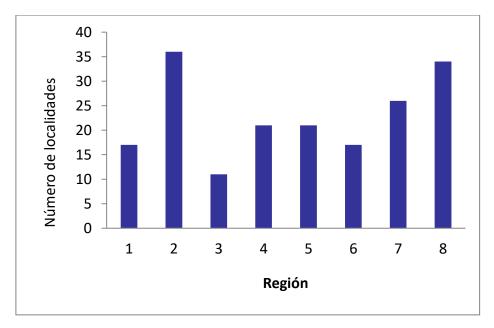


Fig. 23. Número de localidades muestreadas en las regiones establecidas durante el desarrollo del proyecto. Los números indican las regiones, donde 1: Californiana; 2: Noroeste; 3) Occidente; 4) Oriente; 5) Centronorte; 6) Centrosur; 7) Sureste; 8) Suroeste.

Se logró una adecuada representatividad de los principales ecosistemas de México con las localidades muestreadas (Fig. 24). La única ecorregión que no se pudo muestrear fue

las grandes planicies, que incluye los estados de Tamaulipas y Nuevo León. Aunque se reconoce la importancia de representar la variación geográfica de los llamados de ecolocalización de los murciélagos de esta región, la situación social y de seguridad es muy complicada y de alto riesgo. En la ecorregión de selvas cálido húmedas se muestrearon 54 localidades, seguida de la ecorregión de selvas cálido secas con 35 localidades. La ecorregión con el menor número de localidades muestreadas fue la California Mediterránea con 3 pero también es a que cuenta con menor área geográfica (Fig. 25).



Figura 24. Localidades muestreadas en relación a las ecorregiones Nivel 1 definidas por la CONABIO (2008).

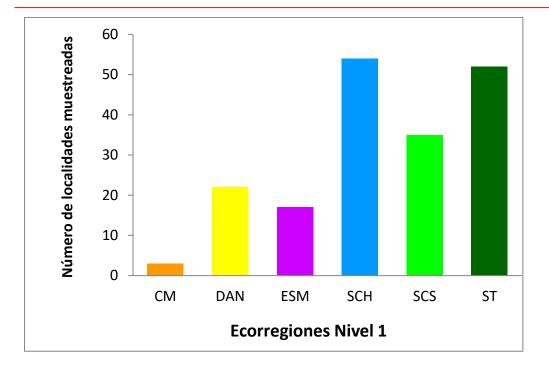


Fig. 25.- Número de localidades muestreadas en las ecorregiones establecidas durante el desarrollo del proyecto. CM-California Mediterránea; DAN- Desiertos de América del Norte; ESM-Elevaciones Semiáridas Meridionales; SCH-Selvas Cálido-Húmedas; SCS-Selvas Cálido-Secas; ST-Sierras Templadas.

Colectores de campo

En cuanto a colectores, el proyecto logró reunir 174 colectores que participaron al menos en una salida de campo (Cuadro 6). Cabe resaltar la importancia de la participación de muchos investigadores que formaron parte de este proyecto entre los que se encuentran los coordinadores del mismo; de igual forma se sumaron una gran cantidad de alumnos de diversas instituciones del país. Se destaca la participación de voluntarios que sin formar parte activa del proyecto se sumaron a las diversas actividades de campo, colaborando en las diversas actividades propias para la obtención de grabaciones.

Cuadro 6. Nombre de los colectores que participaron en la colecta de grabaciones, ejemplares y tejidos de murciélagos insectívoros de México durante el desarrollo del proyecto.

Nombre completo	Apellido paterno	Apellido materno	Nombre	Siglas
Aguilar Oballe Noé de Jesús	Aguilar	Oballe	Noé de Jesús	NJAO
Aguilar Rodríguez Pedro Adrián	Aguilar	Rodríguez	Pedro Adrián	PAAR
Alarcón Montano Martín	Alarcón	Montano	Martín	MAM
Arévalo Johana	Arévalo		Johana	JA
Arreola Gómez Rosario	Arreola	Gómez	Rosario	RAG
Arroyo Enrique	Arroyo		Enrique	EA
Arteaga Arévalo Gabriel	Arteaga	Arévalo	Gabriel	GAA
Arteaga Torres Luis Alberto	Arteaga	Torres	Luis Alberto	LAAT
Ávila Escalante María Luisa	Ávila	Escalante	María Luisa	MLAE
Ávila Flores Rafael	Ávila	Flores	Rafael	RAF
Ávila Torresagatón Luis Gerardo	Ávila	Torresagatón	Luis Gerardo	LGAT
Ayala Berdón Jorge	Ayala	Berdón	Jorge	JAB
Ayala Téllez Héctor Leonel	Ayala	Téllez	Héctor Leonel	HLAT
Bárcenas Horacio	Bárcenas		Horacio	НВ
Batres Simental Adriana	Batres	Simental	Adriana	ABS
Bolívar Cimé Beatriz del Socorro	Bolívar	Cimé	Beatriz del Socorro	BSBC
Briones Salas Miguel	Briones	Salas	Miguel	MBS
Cabrera Campos Iván	Cabrera	Campos	lván	ICC
Cabrera Ojeda Christian David	Cabrera	Ojeda	Christian David	CDCO
Calderón Pérez José	Calderón	Pérez	José	JCP
Campos Maribel	Campos		Maribel	MC
Campuzano Romero Yaksi Yameli	Campuzano	Romero	Yaksi Yameli	YYCR
Carmona Ruíz Beatriz Daniela	Carmona	Ruíz	Beatriz Daniela	BDCR
Carreño Ocampo Michel	Carreño	Ocampo	Michel	MCO
Castellanos Galdámez Mariela del Carmen	Castellanos	Galdámez	Mariela del Carmen	MCCG
Cauich Cauich Ezequiel	Cauich	Cauich	Ezequiel	ECC
Chan Noh Martha	Chan	Noh	Martha	MCN
Chávez Cauich Manuel Jesús	Chávez	Cauich	Manuel Jesús	MJCC
Chávez González Reyna	Chávez	González	Reyna	RCG
Chávez Tovar Cuauhtémoc	Chávez	Tovar	Cuauhtemoc	CCT
Colli Chi Diana Alejandra	Colli	Chi	Diana Alejandra	DACC
Concepción Pérez Ceila	Concepción	Pérez	Ceila	CCP
Cortés Calva Patricia	Cortes	Calva	Patricia	PCC
Cruces Casellas Andrés	Cruces	Casellas	Andrés	ACC
Cruz Jácome Oscar	Cruz	Jácome	Oscar	OCI
Cruz Vargas Andrea	Cruz	Vargas	Andrea	ACV

Nombre completo	Apellido paterno	Apellido materno	Nombre	Siglas
Cruzado Cortés Juan	Cruzado	Cortés	Juan	JCC
Cuenca Villamonte Daniel	Cuenca	Villamonte	Daniel	DCV
Cuevas González Jesús Carlo	Cuevas	González	Jesús Carlo	JCCG
Cuevas Noh Naomi	Cuevas	Noh	Naomi	NCN
de la Paz Cuevas Mayra	de la Paz	Cuevas	Mayra	MPC
de los Santos Pérez Alejandro	de los Santos	Pérez	Alejandro	ADLSP
del Real Monroy Melina	del Real	Monroy	Melina	MRM
Elizalde Arellano Cynthia	Elizalde	Arellano	Cynthia	CEA
Escobedo Rodríguez Ricardo	Escobedo	Rodríguez	Ricardo	RER
Espinoza Gómez Aldo Giovanny	Espinoza	Gómez	Aldo Giovanny	AGEG
Esquivel Arce José Leopoldo	Esquivel	Arce	José Leopoldo	JLEA
Estrella Martinez Erendira	Estrella	Martinez	Erendira	EEM
Farfán Emery	Farfán		Emery	EF
Febles Solís Viviana	Febles	Solís	Viviana	VFS
Figueroa Suárez Nayeli Monserrat	Figueroa	Suárez	Nayeli Monserrat	NMFS
Flores Martínez José Juan	Flores	Martínez	José Juan	JJFM
Flores Peredo Rafael	Flores	Peredo	Rafael	RFP
Frías Rojas Viviana Aketzalli	Frías	Rojas	Viviana Aketzalli	VAFR
Gallegos Ruíz Adriana	Gallegos	Ruíz	Adriana	AGR
García Morales Rodrigo	García	Morales	Rodrigo	RGM
García Luis Margarita	García	Luis	Margarita	MGL
García Mendoza Diego	García	Mendoza	Diego	DFGM
García Paz Rocío	García	Paz	Rocío	RGP
García Rojas Ángel	García	Rojas	Ángel	AGR
Gómez Rodríguez Jaime	Gómez	Rodríguez	Jaime	Eduardo
Gómez Adrián	Gómez	G	Adrián	AG
Gómez Contreras Magali	Gómez	Contreras	Magali	MGC
González Blanca	González		Blanca	BG
Guerrero Enríquez José Antonio	Guerrero	Enríquez	José Antonio	JAGE
Guevara Carrizales Aldo Antonio	Guevara	Carrizales	Aldo Antonio	AAGC
Guillén Servent Antonio	Guillén	Servent	Antonio	AGS
Gurubel González Jessica	Gurubel	González	Jessica	JGG
Gutiérrez González Edgar Guillermo	Gutiérrez	González	Edgar Guillermo	EGGG
Gutiérrez Hernández Jorge David	Gutiérrez	Hernández	Jorge David	JDGH
Gutiérrez López Yesenia	Gutiérrez	López	Yesenia	YGL
Guzmán Hermelinda	Guzmán	- 1	Hermelinda	HG
Hernández Ramos Cintia Nayely	Hernández	Ramos	Cintia Nayely	CNHR
Hernández Betancourt Silvia	Hernández	Betancourt	Silvia	SFHB
Hernández Lira Ariana	Hernández	Lira	Ariana	AHL
Hernández Llamas Alan Roberto	Hernández	Llamas	Alan Roberto	ARHL
Hernández Mijangos Luis Arturo	Hernández	Mijangos	Luis Arturo	LAMH
Hernández Salinas Uriel	Hernández	Salinas	Uriel	UHS
Hernández Torres Kassandra	Hernández	Torres	Kassandra	KHT

Nombre completo	Apellido paterno	Apellido materno	Nombre	Siglas
Hernández Vila Hilda	Hernández	Vila	Hilda	HHV
Ibarra López Martha Pilar	Ibarra	López	Martha Pilar	MPIL
Iglesias López Iraís	Iglesias	López	Iraís	IIL
Íñiguez Dávalos Luis Ignacio	ĺñiguez	Dávalos	Luis Ignacio	LIID
Juárez Maldonado Rafael	Juárez	Maldonado	Rafael	RJM
Koyoc Cruz Manuel Eduardo	Koyoc	Cruz	Manuel Eduardo	MEKC
Lara Ana	Lara		Ana	AL
Lavariega Nolasco Mario	Lavariega	Nolasco	Mario	MLN
Leal Sandoval Alfredo	Leal	Sandoval	Alfredo	ALS
León Alcudia Ezequiel	León	Alcudia	Ezequiel	ELA
León Madrazo Rafael	León	Madrazo	Rafael	RLM
López Cuamatzin Issachar	López	Cuamatzin	Issachar	ILC
López de la Cruz Luis Daniel	López	de la Cruz	Luis Daniel	LDLC
López González Celia	López	González	Celia	CLG
López Téllez María Concepción	López	Téllez	María Concepción	MCLT
López Vázquez Karen	López	Vázquez	Karen	KLV
López Vidal Juan Carlos	López	Vidal	Juan Carlos	JCLV
Lozano Mendoza Abraham	Lozano	Mendoza	Abraham	ALM
Campos Bárbara	Campos		Bárbara	вмс
MacSwiney González María Cristina	MacSwiney	González	María Cristina	MCMG
Martínez Coronel Matías	Martínez	Coronel	Matías	MMC
Martínez Castillo Iván Agustín	Martínez	Castillo	Iván Agustín	IAMC
Martínez Ortiz Elvia	Martínez	Ortiz	Elvia	EMO
Martínez Rangel Sayuri Guadalupe	Martínez	Rangel	Sayuri Guadalupe	SGMR
Martínez Soriano Karina	Martínez	Soriano	Karina	KMS
Medina Bello Kevin	Medina	Bello	Kevin	KMB
Medina Cruz Gabriela Elena	Medina	Cruz	Gabriela Elena	GEMC
Mendoza Guevara Citlali Cecilia	Mendoza	Guevara	Citlali Cecilia	CCMG
Meza Ángel	Meza		Ángel	AM
Miguel Méndez Rebeca Selene	Miguel	Méndez	Rebeca Selene	RSMM
Montiel Reyes Fernando Javier	Montiel	Reyes	Fernando Javier	FJMR
Moreno Arzate Efrén	Moreno	Arzate	Efrén	EMA
Moreno Santillán Diana Daniela	Moreno	Santillán	Diana Daniela	DDMS
Munguía Durán Ana	Munguía	Durán	Ana	AMD
Murrieta Galindo René	Murrieta	Galindo	René	RMG
Olivares Valle José Guadalupe	Olivares	Valle	José Guadalupe	JGOV
Orozco Lugo Carmen Lorena	Orozco	Lugo	Carmen Lorena	CLOL
Ortega Reyes Jorge	Ortega	Reyes	Jorge	JOR
Ortiz López Heidy	Ortiz	López	Heidy	HOL
Ortiz Mayra	Ortiz	-	Mayra	MO
Palomo Arjona Emir	Palomo	Arjona	Emir	EAP
Pardiño Salome Giovanna	Pardiño	Salome	Giovanna	GPS
Pech Canché Juan Manuel	Pech	Canché	Juan Manuel	JMPC

Nombre completo	Apellido paterno	Apellido materno	Nombre	Siglas
Pech Ramón	Pech		Ramón	RP
Pérez Celia Concepción	Pérez		Celia Concepción	CCP
Pérez Garduza Freddy	Pérez	Garduza	Freddy	FPG
Pérez Hernández Heberth	Pérez	Hernández	Heberth	HPH
Pérez Pérez Lucio	Pérez	Pérez	Lucio	LPP
Quijano Barraza Juan Manuel	Quijano	Barraza	Juan Manuel	JMQB
Ramírez Carmoma Geovanny	Ramírez	Carmoma	Geovanny	GRC
Ramírez González Brenda María	Ramírez	González	Brenda María	BMRG
Ramírez María Magdalena	Ramírez		María Magdalena	MMRM
Riesle Silke	Riesle		Silke	SR
Rivera García Gerardo	Rivera	García	Gerardo	GRG
Rizo Aguilar Areli	Rizo	Aguilar	Areli	ARAS
Rodas Martínez Alba Zulema	Rodas	Martínez	Alba Zulema	AZRM
Rojo Cruz Marcial Alejandro	Rojo	Cruz	Marcial Alejandro	MARC
FRomero Jonatan	Romero		Jonatan	JR
Ruíz Lara Alberto	Ruíz	Lara	Alberto	ARL
Salome Pardiño Giovanna Guadalupe	Salome	Pardiño	Giovanna Guadalupe	SPGG
Sánchez Carmona Alexis Fernando	Sánchez	Carmona	Alexis Fernando	AFSC
Sandoval Espinoza Sarahí	Sandoval	Espinoza	Sarahí	SSE
Santiago Plata Víctor Manuel	Santiago	Plata	Víctor Manuel	VMSP
Santiago Ramírez Dulce	Santiago	Ramírez	Dulce	DSR
Selem Salas Celia Isela	Selem	Salas	Celia Isela	CISS
Severiano Hernández Cristian Gerardo	Severiano	Hernández	Cristian Gerardo	CGSH
Solís Pérez Emmanuel	Solís	Pérez	Emmanuel	ESP
Sosa Constantino Francisco Gabriel	Sosa	Constantino	Francisco Gabriel	FGSC
Tamayo Héctor	Tamayo		Héctor	HT
Torres Castro Marco	Torres	Castro	Marco	MTC
Torres Ruíz Díaz María Elena	Torres	Ruíz Díaz	María Elena	METRD
Torres Sebastián Mario	Torres	Sebastian	Mario	MTS
Tremlett Constance	Tremlett		Constance	СТ
Tulcán Flores John	Tulcán	Flores	John	JTF
Tun Garrido Juan	Tun	Garrido	Juan	JTG
Uribe Bencomo Elena Guadalupe	Uribe	Bencomo	Elena Guadalupe	EGUB
Vallado Negroe Zuemy	Vallado	Negroe	Zuemy	ZVN
Varela Fabricio	Varela	-	, Fabricio	FV
Vargas Contreras Jorge Albino	Vargas	Contreras	Jorge Albino	JAVC
Vargas Jiménez Izchel Gabriela	Vargas	Jiménez	Izchel Gabriela	IGVD
Vázquez Cruz Mario Antonio	Vázquez	Cruz	Mario Antonio	MAVC
Vázquez Domínguez Guillermo	Vázquez	Domínguez	Guillermo	GVD
Vázquez Pérez José Raúl	Vázquez	Pérez	José Raúl	JRVP
Vázquez Ruedas Eduardo	Vázquez	Ruedas	Eduardo	EVR
Vega Gutierrez Hugo	Vega	Gutierrez	Hugo	HVG
Velásquez Gutierrez Juan	Velásquez	Gutierrez	Juan	JVG

Nombre completo	Apellido paterno	Apellido materno	Nombre	Siglas	
Vélez Vanegas Laura Alejandra	Vélez	Vanegas	Laura Alejandra	LAVV	
Villanueva Hernández Alí Ituriel	Villanueva	Hernández	Alí Ituriel	AIVH	
Yovel Yossi	Yovel		Yossi	YY	
Zamora Dorian Jonathan Josué	Zamora	Dorian	Jonathan Josué	JJZD	
Zamora Gutiérrez Verónica	Zamora	Gutiérrez	Verónica	VZG	
Zapata Galaviz Axel Eduardo	Zapata	Galaviz	Axel Eduardo	AEZG	
Zárate Juan	Zárate		Juan	JZ	
Zarazúa Mariana	Zarazúa		Mariana	MZ	
Zavala Perla	Zavala		Perla	PZ	

6.5. Número total de grabaciones acústicas

Se obtuvieron un total de 2032 grabaciones en formato WAV de 1657 individuos colectados en las ocho regiones, con un promedio de 1.2 grabaciones por individuo. Cabe destacar que originalmente se habían propuesto un número de 1000 grabaciones, lo que significa que el proyecto entrega más del 200% de las grabaciones propuestas en un inicio (Cuadro 7). Así mismo, se lograron colectar y grabar 68 especies de murciélagos insectívoros, que pertenecen a 7 familias (el 88% de las familias presentes en el país). La familia Thyropteridae fue la única de la que no se pudieron obtener grabaciones (Cuadro 5).

Los meses en los cuales se obtuvo el mayor número de grabaciones fue agosto (n= 440) y mayo (n= 276); mientras que enero (n= 81), febrero (n=58), septiembre (n= 71) y diciembre (n= 71) se grabó el menor número de individuos (Fig. 26).

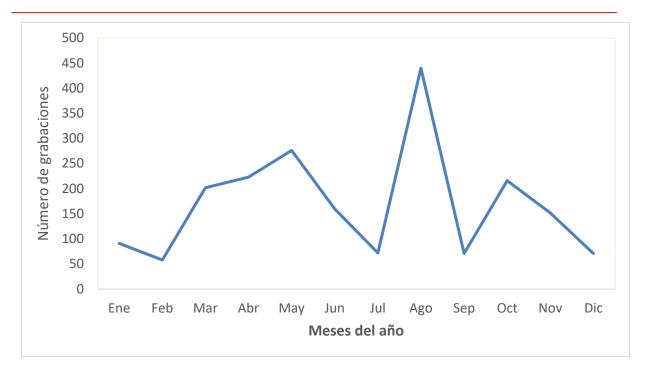


Figura 26. Número de registros de grabaciones realizadas cada mes (2017).

En cuanto a regiones, en la región 2 (Noroeste) se obtuvieron la mayor cantidad de grabaciones (n= 642), seguido de la región 8 (n= 250). Las regiones en la cuales se obtuvo el menor número de grabaciones fueron: la región 5 (Centronorte) (n= 168) y la región 6 (Centrosur) con 174 grabaciones (Fig. 21, Cuadro 7).

Se utilizaron diversos métodos de liberación de los murciélagos capturados para la obtención de sus llamados (véase anexo 7): Cuarto/laboratorio, despegue de sustrato, en bolsa, en mano, perchando y en tirolesa. Principalmente se utilizó la liberación en mano, 1309 individuos fueron grabados bajo esta técnica de liberación, 591 bajo la técnica de tirolesa. La técnica menos utilizada fue liberar al animal cuando estuviese perchando (Cuadro 7).

Cuadro 7. Número de llamados grabados en cada región y por tipo de liberación.

Región	Cuarto/Laboratorio	Despegue de sustrato	En bolsa	Mano	Perchando	Tirolesa	TOTAL
1	1		4	92		88	185
2				285		357	642
3		2	26	100		61	189
4			18	155		11	184
5	1	8		129		30	168
6		4	5	164		1	174
7	1		37	186		16	240
8	17	3	4	198	1	27	250
TOTAL	20	17	94	1309	1	591	2032

La especie con el mayor número de grabaciones fue *Myotis velifer* (n= 285), seguida de *Tadarida brasiliensis* (n= 207) y *Pteronotus parnellii* (n= 191). Seis especies fueron grabadas en una sola ocasión (i.e. *Phyllostomus discolor, Vampyrum spectrum* y *Bauerus dubiaquercus*) (Cuadro 5). La familia Vespertilionidae presentó la mayor cantidad de llamados grabados (n= 951), seguida de Mormoopidae (n= 506). Las familias con el menor número de grabaciones fueron Noctilionidae (n= 10) y Natalidae (n= 41) (Fig. 20).

6.6. Base de datos

Plataforma

Debido a la naturaleza del proyecto, para la base de datos se usaron dos herramientas: un cliente de captura para datos bioacústicos, que se encuentra orientado a la recopilación y anotación de material ultrasónico y sus metadatos asociados, y otra para revisar/anotar datos. Para este proyecto, se usaron herramientas gráficas de escritorio desarrolladas sobre wxpython (un framework que ayuda a garantizar su compatibilidad con distintos sistemas operativos). En ambos casos, el núcleo principal del desarrollo se centra en la capacidad de compartir información con los servidores de CONABIO de forma ordenada, ya sea para la integración de nuevas bases de datos o para el curado y anotación de bases de datos existentes.

La herramienta de captura de datos consta de un sistema con autentificación en el que es posible cargar archivos de audio e imágenes, así como asociar metadatos sobre distintas jerarquías de la información almacenada localmente sobre una base de datos SQLite. Este esquema permite trabajar con la información sin conexión a internet para permitir los cambios en el momento en el que se tenga acceso a la misma, ya sea de forma activa, usando funciones gráficas de sincronización, o por un mecanismo de sincronización automática activado al abrir la aplicación. Al sincronizar las bases de datos locales SQLite, se agregan en una base de datos no relacional MongoDB localizada en la CONABIO. Esta última finalmente se exporta a una base de datos relacional PostgreSQL.

Estructura de la plataforma

El material colectado se organizó siguiendo la estructura de trabajo de las ocho regiones propuestas para facilitar el manejo de la información y controlar la calidad de los datos. En el Protocolo General de trabajo de campo V8 se estableció un código de seis dígitos que determinan la localidad de cada uno de los muestreos. Estos seis dígitos

corresponden al número de la región, el número de sitio dentro de cada región y el número de localidad muestreada dentro de ese sitio en particular. Las grabaciones de sonido, las fotografías y metadatos de los individuos capturados están regidos por estos dígitos que les confieren una identidad geográfica única de la localidad en la cual fueron tomados. El conjunto de metadatos asociado a cada ejemplar colectado y grabado con fines de la fonoteca se ingresó a la plataforma siguiendo los lineamientos establecidos en el convenio y siguiendo las claves numéricas establecidas en el Protocolo General de trabajo de campo V8.

En la reunión desarrollada entre directivos de la AMMAC, la CONABIO y los coordinadores técnicos del proyecto se definieron algunos detalles sobre el destino físico de la colección. Esto permitió que se pudieran definir los siguientes campos de información para la entrega final del material: *Siglas de institución de fonoteca*, *Nombre de Institución de fonoteca* y *Número de catálogo de fonoteca*.

Finalmente, es importante mencionar que un campo que refieren a la información de los ejemplares depositados en colecciones biológicas (*Número catálogo colector*) se especificó como No Aplica (NA), debido a que el número de catálogo personal de cada colector no era de importancia para esta base de datos, dado que fue establecido por el grupo de trabajo que todos los ejemplares recolectados serían ingresados a la colección del CIBNOR.

6.7. Base de datos de los tejidos y ejemplares colectados.

Un total de 52 ejemplares fueron colectados y depositados en la Colección del CIBNOR en Baja California Sur. *Pteronotus davyi* fue la especie con el mayor número de ejemplares colectados y depositados (*n*= 9), seguido de *Myotis velifer*, (*n*= 7), *Mormoops megalophylla* y *Macrotus californicus* ambos con 6 ejemplares (Cuadro 8).

En lo que corresponde a tejidos, se colectaron 1045 muestras que fueron depositadas en la colección mastozoológica del CIIDIR, Unidad Durango, IPN. *Myotis velifer* (n= 143) fue la especie con la mayor cantidad de tejidos depositados, seguido de *Tadarida brasiliensis* (n= 95) y *Pteronotus davyi* (n= 78) (Cuadro 8).

Cuadro 8. Número de tejidos y ejemplares colectados y depositados por especie

Especie	Total tejidos CIIDIR	Total vouchers CIBNOR
Antrozous pallidus	52	1
Artibeus lituratus		1
Balantiopteryx io	2	
Balantiopteryx plicata	27	
Bauerus dubiaquercus	1	
Chrotopterus auritus	3	
Corynorhinus townsendii	14	1
Dermanura phaeotis		2
Eptesicus brasiliensis	2	
Eptesicus furinalis	13	
Eptesicus fuscus	40	
Eumops nanus	1	
Eumops perotis	1	1
Glossophaga soricina		1
Idionycteris phyllotis	1	
Lampronycteris brachyotis	1	
Lasiurus blossevillii	9	1
Lasiurus cinereus	17	

ASOCIACIÓN MEXICANA DE MASTOZOOLOGÍA, A.C.

Especie	Total tejidos CIIDIR	Total vouchers CIBNOR
Lasiurus ega	6	
Lasiurus intermedius	2	
Lasiurus xanthinus	4	
Lonchorhina aurita	1	
Macrotus californicus	25	6
Macrotus waterhousii	2	
Micronycteris microtis	2	
Mimon cozumelae	7	
Molossus alvarezi	3	
Molossus molossus	1	
Molossus rufus	46	
Molossus sinaloae	4	
Mormoops megalophylla	74	6
Myotis albescens	3	
Myotis auriculus	4	
Myotis californicus	14	3
Myotis elegans	2	
Myotis fortidens	3	
Myotis keaysi	25	1
Myotis melanorhinus	9	
Myotis nigricans	5	
Myotis thysanodes	2	
Myotis velifer	143	7
Myotis vivesi	18	
Myotis volans	10	
Myotis yumanensis	49	3
Natalus mexicanus	32	2
Noctilio leporinus	9	
Nyctinomops aurispinosus	3	
Nyctinomops femorosaccus	2	
Nyctinomops laticaudatus	5	
Parastrellus hesperus	12	
Peropteryx macrotis	7	
Pteronotus davyi	78	9
Pteronotus gymnonotus	2	
Pteronotus parnellii	60	4

Informe Final.

Especie	Total tejidos CIIDIR	Total vouchers CIBNOR
Pteronotus personatus	31	
Rhogeessa aeneus	6	
Rhogeessa alleni	2	
Rhogeessa parvula	14	
Rhogeessa tumida	5	
Rhynchonycteris naso	15	
Saccopteryx bilineata	14	1
Tadarida brasiliensis	95	2
Trachops cirrhosus	5	
TOTAL	1045	52

6.8. Fotografías digitales de los individuos colectados

Todas las especies capturadas cuentan con registro fotográfico. De 1657 individuos 98% de estos registros cuentan con fotografías. Todas las fotografías fueron cargadas a la plataforma diseñada *ex profeso* para este proyecto.

7. DISCUSIÓN

El proyecto cumplió en tiempo y forma con los objetivos planteados desde el principio en el convenio previamente firmado con sus modificaciones autorizadas. De los siete objetivos particulares propuestos, todos se cumplieron al 100% y en algunos casos se excedió en el total de entregables por meta. Las metas planteadas originalmente fueron cumplidas con cabalidad y forma por lo que se considera que la compilación de la fonoteca de llamados de ecolocalización de murciélagos insectívoros mexicanos está concluida en su primera fase. El análisis de los llamados para investigar la variación intraespecífica (individual, entre jóvenes y adultos, sexual y geográfica), y entre métodos de grabación, es un proceso que se estará llevando a cabo en los siguientes meses. A partir de un conjunto de datos cuantitativos obtenidos a partir del análisis de los pulsos de ecolocalización mediante un procedimiento estandarizado, podremos evaluar las posibilidades de discriminación de las especies insectívoras mexicanas y generar una serie de publicaciones derivadas de este proyecto.

Cobertura geográfica del proyecto

La cobertura geográfica alcanzada por el proyecto corresponde al 87% del territorio nacional con al menos un sitio de colecta en cada estado muestreado. Algunos estados solo presentan un sitio de colecta debido a que originalmente no estaban contemplados dentro del muestreo principalmente por cuestiones de seguridad. Sin embargo, al final se logró representarlos dentro de la base de datos. Los ecosistemas representados en nuestras colectas corresponden al 90% de los reportados para el país. Las colectas incluyeron diversos sitios de percha como cuevas, troncos de árboles y diversas estructuras antropogénicas como puentes, techos, sitios arqueológicos, etc. En algunos casos fue imposible colectar en algunas zonas del país, pero se tiene contemplado en futuras fases del proyecto alcanzar una cobertura del 100% con al menos un sitio representativo por estado.

Representatividad de especies

El proyecto tenía como meta obtener grabaciones del 80% de las especies de murciélagos insectívoros mexicanos. Hasta el momento, sin embargo, se tiene cubierto el 66% de las especies insectívoras reportadas para el país. Aunque no se alcanzó la meta, este número representa un alto porcentaje de colectas considerando que algunas de ellas son de difícil captura debido a su rareza (muy baja abundancia), o a sus peculiares patrones de refugio o de vuelo. La especie con mayor número de grabaciones a lo largo de todo el país es *Myotis velifer* la cual cuenta con 285 llamados. Algunas especies por su rareza o dificultad de captura presentan un solo llamado, siendo un total de seis. Las familias Vespertilionidae y Mormoopidae son las mejor representadas en las grabaciones obtenidas.

Número de llamados de especies en categoría de riesgo/endémicas

Del total de especies grabadas, el 45% se encuentran en alguna categoría de riesgo de acuerdo a la NOM-059-2010 (SEMARNAT, 2010). Se obtuvo un registro acústico de cuatro especies catalogadas en la categoría de protección especial (*Peropteryx kappleri*, *Rhynchonycteris naso, Eumops nanus* y *Myotis albescens*), 5 en la categoría de amenazada (*Pteronotus gymnonotus, Chrotopterus auritus, Lampronycteris brachyotis, Lonchorhina aurita* y *Mimon cozumelae*) y 2 en la categoría de peligro de extinción (*Vampyrum spectrum* y *Myotis vivesi*). Se realizó un esfuerzo de captura dirigido a la colecta de una especie endémica de México, el murciélago pescador del Golfo de California (*Myotis vivesi*), el cual dio como resultado un total de 19 grabaciones de obtenidas. Dentro de las especies endémicas también se tienen registros para *Rhogeessa alleni*, y *R. parvula*, que son especies de difícil captura. Se incluyen de igual forma grabaciones de la especie *Corynorhinus mexicanus*, que, aunque no es difícil de capturar, sí es considerada como endémica de México. De igual forma se tienen que hacer esfuerzos dirigidos específicamente para la colecta y grabación del resto de las especies endémicas al país las cuales son alrededor del 60%. La dificultad en su captura resulta de la micro-endemicidad de varias de ellas, así como

escasa abundancia, o de su distribución en zonas de alto riesgo (p.e. *Rhogeessa mira, Myotis planiceps*).

Importancia del trabajo a nivel mundial

México está considerado dentro de los cinco países más importantes para la diversidad de mamíferos, es decir es considerado como megadiverso. El hecho de implementar un proyecto de esta naturaleza implica un alto grado de esfuerzo profesional y de trabajo en equipo, ya que requiere de la correcta identificación de ejemplares, manejo adecuado de los individuos, búsqueda de refugios específicos, o bien trabajar en ambientes tan contrastantes como un matorral xerófilo de desierto hasta una selva alta perennifolia. El grupo de trabajo conformado por los expertos del proyecto, cubrieron en su totalidad la mayor diversidad de hábitats con presencia de murciélagos insectívoros, aunque en muchos casos los esfuerzos de captura fueron bajos. Cabe resaltar que este proyecto es de suma importancia debido a que se compiló la primera fonoteca de llamados de ecolocalización para murciélagos insectívoros a nivel mundial en un país megadiverso. Los resultados y la plataforma derivados de este proyecto ya han sido presentada en varios foros académicos nacionales (Congreso Nacional de Mastozoología) e internacionales (Congreso Latinoamericano de Murciélagos y Congreso de la Association for Tropical Biology and Conservation), generando interés en reproducir la metodología y estructura de esta fonoteca en otros países. La plataforma y base de datos desarrollada dentro del proyecto es base fundamental para estudios posteriores dentro del país, así como referente para usuarios de otras latitudes que quieran ya sea trabajar dentro de México o con especies compartidas por nuestro país.

Limitantes del proyecto

Las principales limitantes asociadas al proyecto radican en que por ser un trabajo realizado en campo y con una gran cantidad de condiciones ambientales (principalmente extrema humedad), numerosos archivos de grabación no tuvieron la calidad requerida y

tuvieron que ser desechados. Algunas variables ambientales (i.e. como humedad), también limitaron en ocasiones el correcto funcionamiento de los detectores ultrasónicos, retrasando el trabajo en algunas regiones. De igual forma la estacionalidad en zonas desérticas y templadas impidió que se tuvieran colectas a lo largo de todo el año, caso contrario en zonas tropicales donde se tienen registros cada mes.

Propuesta a futuro

El proyecto presenta un potencial de uso ilimitado a futuro, debido a que la plataforma puede ir creciendo en número de llamados registrados por parte de los usuarios. Los llamados registrados durante el proyecto servirán como referentes geográficos de la presencia de las especies, además de que permitirán identificar diferencias individuales, entre hábitats o entre áreas geográficas en la estructura de los llamados. Esta plataforma ha despertado interés en investigadores de diferentes latitudes por lo que, en principio, podría ser utilizada por investigadores de otros países para la identificación de sus propios llamados. En fases posteriores se pueden incluir llamados de especies de lugares muy específicos que no fueron cubiertos en esta primera fase, además la colecta de tejidos y su almacenamiento, implican un potencial de uso enorme ya que se pueden aplicar diferentes técnicas moleculares para corroborar la identificación taxonómica del individuo o bien para determinar especies crípticas que fácilmente pueden ser confundidas en campo. La colecta de ejemplares voucher ha incrementado el acervo de las colecciones biológicas en donde fueron depositados, además de corroborar la presencia de especies en determinadas zonas o inclusive cubrir vacíos de distribución para algunas especies de difícil captura. El proyecto es una notable contribución por parte del grupo de académicos quiropterólogos participantes y que sienta un precedente para futuras colaboraciones con otros grupos de trabajo.

Se sugieren de manera general dos etapas posteriores a la aquí presentada:

Fase 2. Ampliación de la fonoteca de referencia para conseguir sonidos de ecolocalización de todas las especies de murciélagos insectívoros con distribución en México a lo largo de toda

ASOCIACIÓN MEXICANA DE MASTOZOOLOGÍA. A.C.

su área de distribución y su rango de comportamiento individual. Continuar el trabajo de campo por un aproximado de dos años para recabar más grabaciones, hasta conseguir la cobertura taxonómica y geográfica adecuada para completar información de especies raras o de difícil localización y captura, o de taxones crípticos. Finalmente, iniciar un programa piloto de monitoreo de poblaciones, en una serie de sitios de muestreo distribuidos en los distintos biomas y regiones del país.

Fase 3. Análisis global de las grabaciones reunidas en la fonoteca para describir la variación intraspecífica en las características de los sonidos de ecolocalización. Desarrollo de criterios de discriminación entre especies a partir de las características de los sonidos, evaluando las probabilidades de identificación correcta y el grado de traslape entre especies. Diseño de herramientas automatizada de identificación acústica de los murciélagos mexicanos que puedan funcionar en red., y que ofrezcan información sobre la confiabilidad de la identificación, e implementación de los procedimientos de validación de datos para su uso en programas de monitoreo regionales, nacionales o internacionales. Ampliar la cobertura del programa de monitoreo, utilizando para su diseño la información generada por el programa piloto, con el objetivo de conformar un sistema de monitoreo que permita obtener información sobre la estado de las poblaciones mexicanas de quirópteros insectívoros y su relación con la calidad de los ecosistemas.

8. CONCLUSIONES

- 1. Se obtuvieron un total de 2032 grabaciones de llamados de ecolocalización de murciélagos insectívoros mexicanos.
- 2. Estos llamados corresponden a un total de 68 especies que pertenecen a siete familias de murciélagos.
- 3. Se visitaron un total de 183 sitios de colecta en cada una de las 8 regiones muestreadas. Esto incluye en algunos casos colectas en estados que no estaban originalmente contemplados en la propuesta.
- 4. Se cubrió el registro de llamados de ecolocalización del 64% de las especies de murciélagos insectívoros de México.
- 5. Se cuenta con una colección de fotografías asociadas a los ejemplares grabados, lo cual incrementa considerablemente el acervo fotográfico de la CONABIO.
- 6. Se realizó un mapa digitalizado de los sitios de colecta, el cual estará disponible dentro de CONABIO.
- 7. Se cuenta con una base de metadatos sobre los llamados de ecolocalización de los murciélagos insectívoros mexicanos dentro de una plataforma especialmente diseñada por personal de la CONABIO para este proyecto.

9. REFERENCIAS

- Adams, A. M., Jantzen, M. K., Hamilton, R. M. y Fenton, M. B. 2012. Do you hear what I hear? Implications of detector selection for acoustic monitoring of bats. Methods in Ecology and Evolution, 3: 992-998.
- Arita, H. T. 1996. The conservation of cave-roosting bats in Yucatan, Mexico. Biological Conservation, 76: 177-185.
- Ávila-Flores, R. y Fenton, M. B. 2005. Use of spatial features by foraging insectivorous bats in a large urban landscape. Journal of Mammalogy, 86: 1193-1204.
- Ávila-Torres Agatón, L. G. y Guillén Servent, A. 2007. Counting bats in tropical cave roosts using a simultaneous infrared video and ultrasound detection system: an attempt in a Mexican deciduous forest habitat. Bat Research News, 48(4): 175.
- Barclay, R. M. R. 1999. Bats are not birds-a cautionary note on using echolocation calls to identify bats: a comment. Journal of Mammalogy, 80: 290-296.
- Barclay, R. M. R. y Brigham, R. M. 1991. Prey detection, dietary niche breadth, and body size in bats: Why are aerial insectivorous bats so small? The American Naturalist, 137(5): 693-703.
- Barclay, R. M. R. y Brigham, R. M. 2004. Geographic variation in the echolocation calls of bats: A complication for identifying species by their calls. Pp. 144-149, en: Brigham, R. M., Kalko, E. K. V., Jones, G., Parsons, S. y Limpens, H. J. G. A. (eds.). Bat echolocation research. Tools, techniques and analysis. Bat Conservation International, Austin, Texas, EEUU.
- Battersby, J. (Compilador). 2010. Guidelines for surveillance and monitoring of European bats. UNEP/EUROBATS Secretariat, Bonn, Germany. 95 Pp.
- BCT (Bat Conservation Trust). 2010. The National Bat Monitoring Programme Annual Report 2009. Bat Conservation Trust, London, Inglaterra.
- Bradbury, J. W. y Vehrencamp, S. L. 1998. Principles of Animal Communication. 1st ed. Sinauer Associates, Inc., Sunderland, MA, EEUU. 882 Pp.

- Briones-Salas, M., Peralta-Pérez, M. y García-Luis, M. 2013. Acoustic characterization of new species of bats for the State of Oaxaca, Mexico. Therya, 4:15-32.
- Ceballos, G., y Oliva, G. (Coordinadores). 2005. Los mamíferos silvestres de México. México, D. F.: CONABIO Fondo de Cultura Económica. 986 Pp.
- Cleveland, C. J., Betke, M., Federico, P. *et al.* 2006. Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Frontiers in Ecology and the Environment, 4: 238–243.
- Collen, A. 2012. The evolution of echolocation. PhD thesis, University College London.
- Fenton, M. B. 2000. Choosing the 'correct' bat detector. Acta Chiropterologica, 2: 215-224.
- Fenton, M. B. 2003. Eavesdropping on the echolocation and social calls of bats. Mammal Review 33: 193-204.
- Gómez-Naranjo, M. V. 2013. Las comunidades de murciélagos insectívoros de los humedales costeros de Veracruz, México, a partir de la detección acústica. Xalapa, Veracruz: Instituto de Ecología, A. C.
- González-Terrazas, T, P., Víquez, L. R., Ibarra-Macías, A., Ruíz, A. T., Torres-Knoop, L., Jung, K., Tschapka, M. y Medellín R. A. 2017. New records and range extension of *Promops* centralis (Chiroptera: Molossidae). Revista Mexicana de Biodiversidad, 87: 1407-1411.
- Griffin, D. R., Webster, F. A. y Michael, C. R. 1960. The echolocation of flying insects by bats.

 Animal Behavior, 8: 141-154.
- Grindal, S. D. 1996. Habitat use by bats in fragmented forests. Pp. 260-272, in bats and forests symposium (Ed. by R. M. R. Barclay and R. M. Brigham). British Columbia Ministry of forest, Victoria, British Columbia, Working paper 23/1996, 292 pp.
- Guillén, A., Juste B., J. e Ibáñez, C. 2000. Variation in the frequency of the echolocation calls of *Hipposideros ruber* in the Gulf of Guinea: an exploration of the adaptive meaning of the constant frequency value in rhinolophoid CF bats. Journal of Evolutionary Biology, 13: 70-80.

- Guillén-Servent, A. 2005. Diversity of echolocation and foraging behavior of mormoopid bats in an evolutionary context. Bat Research News, 46:176-177.
- Guillén-Servent, A. e Ibáñez, C. 2007. Unusual echolocation behavior in a small molossid bat, *Molossops temminckii*, that forages near background clutter. Behavioral Ecology & Sociobiology, 61:1599-1613.
- Hall, R. E. 1981. The mammals of North America. John Wiley & Sons. xv+1181+1190 Pp.
- Haysom, K., Dekker, J., Russ, J., van der Meij, T. y van Strien, A. 2013. European bat population trends. A prototype biodiversity indicator. European Environment Agency, Copenhagen, Denmark. 61 Pp.
- Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. y Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25: 1965–1978.
- Hughes, A. C., Satasook, C., Bates, P. J. J., Soisook, P., Sritongchuay, T., Jones, G. y
 Bumrungsri, S. 2011. Using Echolocation Calls to Identify Thai Bat Species:
 Vespertilionidae, Emballonuridae, Nycteridae and Megadermatidae. Acta
 Chiropterologica 13: 447-455.
- Hutchinson, J. M. C. y Waser, P. M. 2007. Use, misuse and extensions of "ideal gas" models of animal encounter. Biological Reviews 82: 335-359.
- Ibáñez, C., Guillén, A., Juste B., A. y Pérez-Jordá, J. L. 1999. Echolocation calls of *Pteronotus* davyi (Chiroptera: Mormoopidae) from Panama. Journal of Mammalogy, 80:924-928.
- Ibáñez, C., Juste B., J., López-Wilchis, R., Albuja V., L. y Núñez-Garduño, A. 2002. Echolocation of three species of sac-winged bats (*Balantiopteryx*). Journal of Mammalogy, 83:1049–1057.
- Ibáñez, C., Juste, J., López-Wilchis, R. y Núñez-Garduño, A. 2004. Habitat variation and jamming avoidance in the echolocation call of the sac-winged bat (*Balantiopteryx plicata*). Journal of Mammalogy, 85:38-42.

- Ibáñez, C., López-Wilchis, R., Juste B., J. y León-Galván, B. A. 2001. Description of the echolocation calls and a noteworthy record of *Pteronotus gymnonotus* (Chiroptera, Mormoopidae) from Tabasco, Mexico. Southwestern Naturalist, 45:345-347.
- Ibarra-Alvarado, C. E. 2006. El Comportamiento ecolocador del murciélago de espalda desnuda, *Pteronotus davyi* (Chiroptera: Mormoopidae). Facultad de Ciencias. México D. F. Universidad Nacional Autónoma de México.
- Ibarra-Alvarado, C. E. y Guillén-Servent, A. 2005. The echolocation behavior of Davy's naked-backed bat, *Pteronotus davyi* (Chiroptera: Mormoopidae). Bat Research News, 46(4): 183.
- Jones, G. y Holderied, M. W. 2007. Bat echolocation calls: adaptation and convergent evolution. Proceedings of the Royal Society of London, Biology 274: 905-912.
- Jones, K. E., Russ, J. A., Bashta, A.-T., et al. 2013. Indicator Bats Program: A System for the Global Acoustic Monitoring of Bats. Pp. 211-247, en: B. Collen, Pettorelli, N., Baillie, J. E. M. y Durant, S. M. (eds.). Biodiversity Monitoring and Conservation. Wiley-Blackwell.
- Kalko, E. K. V. y Schnitzler, H.-U. 1993. Plasticity in echolocation signals of European pipistrelle bats in search flight: implications for habitat use and prey detection. Behavioral Ecology & Sociobiology, 33: 415-428.
- Kalko, E. K. V. y Schnitzler, H.-U. 1993. Plasticity in echolocation signals of European pipistrelle bats in search flight: implications for habitat use and prey detection. Behavioral Ecology & Sociobiology, 33: 415-428.
- Kalko, E. K. V., Estrada Villegas, S., Schmidt, M., Wegmann, M. y Meyer, C. F. J. 2008. Flying high—assessing the use of the aerosphere by bats. Integrative and Comparative Biology 48: 60–73.
- Kunz, T. H., Arnett, E. B., Cooper, B. M. et al. 2007b. Assessing Impacts of Wind-Energy Development on Nocturnally Active Birds and Bats: A Guidance Document. Journal of Wildlife Management 71: 2449–2486.

- Kunz, T. H., Arnett, E. B., Erickson, W. P., Hoar, A. R., Johnson, G. D., Larkin, R. P., Strickland,
 M. D., Thresher, R. W. y Tuttle, M. D. 2007a. Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses. Frontiers in Ecology and the Environment, 5:315–324.
- Kunz, T. H., Braun de Torrez, E., Bauer, D., Lobova, T. y Fleming, T. H. 2011. Ecosystem services provided by bats. Ann. N.Y. Acad. Sci. 1223: 1-38.
- Kunz, T. H., Hodgkison, R. y Weise, C. D. 2009. Methods of capturing and handling bats. In:Ecological and behavioral methods for the study of bats (Ed. by Kunz, T. H. y Parsons,S.). Baltimore, Maryland: The Johns Hopkins University Press. pp. 3-35.
- López-Pérez, C. G. 2007. Análisis comparado del comportamiento ecolocador de los murciélagos *Peropteryx macrotis* y *Peropteryx trinitatis*. México D.F. Unidad Xochimilco, Universidad Autónoma Metropolitana.
- Lundy, M., Montgomery, I. y Russ, J. 2010. Climate change-linked range expansion of Nathusius' pipistrelle bat, *Pipistrellus nathusii* (Keyserling y Blasius, 1839). Journal of Biogeography 37: 2232-2242.
- MacSwiney G., M. C., Bolívar C., B., Clarke, F. M. y Racey, P. A. 2006. Nuevos registros de *Pteronotus personatus* y *Cynomops mexicanus* (Chiroptera) en el estado de Yucatán, México. Revista Mexicana de Mastozoología, 10:102-109.
- MacSwiney G., M. C., Bolívar Cimé, B., Clarke, F. M. y Racey, P. A. 2009. Insectivorous Bat Activity at Cenotes in the Yucatan Peninsula, Mexico. Acta Chiropterologica, 11:139-147.
- MacSwiney G., M. C., Clarke, F. M. y Racey, P. A. 2008. What you see is not what you get: the role of ultrasonic detectors in increasing inventory completeness in Neotropical bat assemblages. Journal of Applied Ecology, 45:1364–1371.
- Manley, P. N., Van Horne, B., Roth, J. K., Zielinski, W. J., McKenzie, M. M., Weller, T. J., Weckerly, F. W. y Vojta, C. 2006. Multiple species inventory and monitoring technical

- guide. Gen. Tech. Rep. WO-73. Department of Agriculture, Forest Service, Washington Office, Washington, DC, U.S. 204 Pp.
- McCracken, G. F., Westbrook, J. K., Brown, V. A., Eldridge, M., Federico, P. y Kunz, T. H. 2012.

 Bats Track and Exploit Changes in Insect Pest Populations. PLoS ONE 7: e43839.
- Medellín, R., Arita, H. T. y Sánchez H., O. 2008. Identificación de los murciélagos de México.

 Clave de campo. Segunda Edición ed. Instituto de Ecología, Universidad Nacional

 Autónoma de México, México, D. F. 78 Pp.
- Mehr, M., Brandl, R., Hothorn, T., Dziock, F., Förster, B. y Müller, J. 2011. Land use is more important than climate for species richness and composition of bat assemblages on a regional scale. Mammalian Biology Zeitschrift für Säugetierkunde 76: 451-460.
- Meneses Horán, S. 2013. Estudio de la variación espacial y temporal de la actividad de los murciélagos insectívoros del humedal de la Mancha, Municipio de Actopan, Veracruz, con métodos de detección acústica. Tesis de Licenciatura, Benemérita Universidad Autónoma de Puebla.
- Meyer, C. F. J., Aguiar, L. M. S., Aguirre, L. F. *et al.* 2010. Long-term monitoring of tropical bats for anthropogenic impact assessment: Gauging the statistical power to detect population change. Biological Conservation, 143: 2797–2807.
- Orozco-Lugo, L., Guillén-Servent, A., Avila-TorresAgatón, L. G., Palacios-Franco, A. y Kuri-Rojas, A. 2002. Echolocation of some aerial insectivorous bats from Sierra de Huautla (Morelos, México). In: 49th Annual Meeting of The Southwestern Association of Naturalists. Cuernavaca, Morelos, México, Universidad Autónoma del Estado de Morelos.
- Orozco-Lugo, L., Guillén-Servent, A., Valenzuela-Galván, D. y Arita, H. T. 2013. Descripción de los pulsos de ecolocación de once especies de murciélagos insectívoros aéreos de una selva baja caducifolia en Morelos, México.

- Parsons, S. y Szewczak, J. M. 2009. Detecting, recording, and analyzing the vocalizations of bats. In: Ecological and behavioral methods for the study of bats (Ed. by Kunz, T. H. y Parsons, S.). Baltimore, Maryland: The Johns Hopkins University Press. pp. 91-111.
- Pech-Canché, J. M., Mac Swiney González, M. C. y Estrella E., E. 2010. Importancia de los detectores ultrasónicos para mejorar los inventarios de murciélagos Neotropicales.

 Therya, 1:221- 228.
- Pellet, J. y Schmidt, B. R. 2005. Monitoring distributions using call surveys: estimating site occupancy, detection probabilities and inferring absence. Biological Conservation, 123: m27-35.
- Racey, P. A. y Entwistle, A. C. 2003. Conservation ecology of bats. In: Bat ecology (Ed. by Kunz, T. H. y Fenton, M. B.). Chicago y London: University of Chicago Press. pp. 680-743.
- Rainey, W. E. e Ingersoll, T. 2009. Using acoustic sampling of bat assemblages to monitor ecosystem trends. PhD Thesis U. S. Geological Survey, Western Ecological Center.
- Ratcliffe, J. M., Hofstede, H. M., Ávila-Flores, R., Fenton, M. B., McCracken, G. F., Biscardi, S., Blasko, J., Gillan, E., Orprecio, J. y Spnajer, G. 2004. Conspecifics influence call design in the Brazilian free-tailed bat, *Tadarida brasiliensis*. Canadian Journal of Zoology, 82: 966-971.
- Reardon, T. 2010. Survey guidelines for Australia's threatened bats. Department of environment, water, heritage and the arts. Australian Government. 71 Pp.
- Rebelo, H., Tarroso P. y Jones G. 2010. Predicted impact of climate change on European bats in relation to their biogeographic patterns. Global Change Biology, 16: 561-576.
- Reid, F. A. 2009. A field guide to the mammals of Central America and Southeast Mexico. 2nd ed. Oxford University Press, New York, EEUU. xvii + 346 Pp.
- Rizo-Aguilar, A. 2008. Descripción y análisis de los pulsos de ecolocación de 14 especies de murciélagos insectívoros aéreos del estado de Morelos. En: *Biodiversidad y Ecología Animal*, pp. 101. Xalapa, Veracruz, México: Instituto de Ecología, A. C.

- Rizo-Aguilar, A., Guillén Servent, A. y Sosa, V. 2007. Analysis of echolocation calls from fourteen species of aerial insectivorous bats of the Morelos state, México. Bat Research News, 48: 291.
- Roche N., Langton S., Aughney T., Russ J. 2011. A car-based monitoring method reveals new information on bat populations and distributions in Ireland. Animal Conservation, 14: 642–651.
- Roche, N., Langton, S. y Aughney, T. 2012. Car-based bat monitoring in Ireland 2003-2011.

 National Parks and Wildlife Service, Department of the Arts, Heritage and the

 Gaeltacht, Ireland. 80 Pp.
- Rydell, J., Arita, H. T., Santos, M. y Granados, J. 2002. Acoustic identification of insectivorous bats (order Chiroptera) of Yucatan, Mexico. Journal of Zoology, London, 257: 27-36.
- Schnitzler, H. U., Moss, C. F. y Denzinger, A. 2003. From spatial orientation to food acquisition in echolocating bats. Trends in Ecology and Evolution, 18: 386-394.
- Schnitzler, H.-U. y Kalko, E. K. V. 1998. How echolocating bats search and find food. Pp. 183-196, en: Kunz, T. H. y Racey, P. A. (eds.). Bat Biology and Conservation. Smithsonian Institution Press, Washington and London.
- Schnitzler, H.-U., Moss, C. F. y Denzinger, A. 2003. From spatial orientation to food acquisition in echolocating bats. Trends in Ecology and Evolution, 18: 386-394.
- Sherwin, H. A., Gannon, W. L. y Haymond, S. 2000. The efficacy of acoustic techniques to infer differential use of habitat by bats. Acta Chiropterologica, 2: 145-153.
- Sherwin, H. A., Montgomery, W. I. y Lundy, M. G. 2013. The impact and implications of climate change for bats. Mammal Review, 43: 171-182.
- Siemers, B. M., Kalko, E. K. V. y Schnitzler, H. U. 2001. Echolocation behavior and signal plasticity in the Neotropical bat *Myotis nigricans* (Schinz, 1821) (Vespertilionidae): a convergent case with European species of *Pipistrellus*? Behavioral Ecology & Sociobiology, 50: 317-328.

- Simmons, J. A., Howell, D. J. y Suga, N. 1975. Information content of bat sonar echoes: Recent research on echolocation in bats identifies some of the kinds of information conveyed by echoes of their sonar sounds. American Scientist, 63: 204-215.
- Smotherman, M. y Guillén Servent, A. 2008. Doppler-shift compensation behavior by

 Wagner's mustached bat, *Pteronotus personatus*. Journal of the Acoustical Society of

 America, 1234331–1234339.
- Stahlschmidt, P. y Bruhl, C. A. 2012. Bats as bioindicators the need of a standardized method for acoustic bat activity surveys. Methods in Ecology and Evolution, 3(3): 503-508.
- Torres-Morales, L. 2007. Uso de los hábitats por las especies de murciélagos insectívoros del valle del río Pescados, Veracruz. Tesis de maestría. Instituto de Ecología, A. C. Xalapa, México.
- USFWS (US Fish and Wildlife Service). 2012a. Regional Summary Report Mobile Acoustical Bat Monitoring. National Wildlife Refuge System, Southeast Region Inventory & Monitoring Network, 3Pp.
- USFWS (US Fish and Wildlife Service). 2012b. Land-Based Wind Energy Guidelines. U.S. Fish and Wildlife Service, http://www.fws.gov. vii + 71 Pp.
- USFWS (US Fish and Wildlife Service). 2014. Range wide Indiana Bat Summer Survery Guidelines 2014. US Fish and Wildlife Service. 41 Pp.
- Vonhof, M. J. 2002. Handbook of Inventory Methods and Standard Protocols for Surveying

 Bats in Alberta. Fish and Wildlife Division, 2nd floor, 9915 108 Street, Edmonton, T5K

 2G8 (780--427-5185), Edmonton, Alberta, Canada. iii + 60 Pp.
- Walsh, A., Barclay, R. M. R. y McCracken, G. F. 2004. Designing bat-activity surveys for inventory and monitoring studies at local and regional scales. Pp. 157-165, en:
 Brigham, R. M., Kalko, E. K. V., Jones, G., Parsons, S. y Limpens, H. J. G. A. (eds.). Bat echolocation research. Tools, techniques and analysis. Bat Conservation International, Austin, Texas, EEUU.

ASOCIACIÓN MEXICANA DE MASTOZOOLOGÍA. A.C.

- Walters, C. L., Collen, A., Lucas, T., Mroz, K., Sayer, C. A. y Jones, K. E. 2013. Challenges of Using Bioacoustics to Globally Monitor Bats (Ed. by R. A. Adams and S. C. Pedersen).

 Bat Evolution, Ecology and Conservation. pp. 479-499.
- Walters, C. L., Freeman, R., Collen, A., Dietz, C., Brock Fenton, M., Jones, G., Obrist, M. K., Puechmaille, S. J., Sattler, T., Siemers, B. M., Parsons, S. y Jones, K. E. 2012. A continental-scale tool for acoustic identification of European bats. Journal of Applied Ecology, 49:1064-1074.
- Wickramasinghe, L. P., Harris, S., Jones, G. y Vaughan, N. 2003. Bat activity and species richness on organic and conventional farms: impact of agricultural intensification.

 Journal of Applied Ecology, 40: 984–993.
- Williams-Guillen, K y Perfecto, I. 2011. Ensemble Composition and Activity Levels of Insectivorous Bats in Response to Management Intensification in Coffee Agroforestry Systems. Plos One, 6(1):1-10.
- Zamora-Gutiérrez, V., López-González. C., Mac Swiney G., M. C., Fenton, B. M., Jones, G., Kalko, E. K.V., Puechmaille, S. J., Stathopoulos, V. y Jones, K. E. 2016. Acoustic identification of Mexican bats based on taxonomic and ecological constraints on call design. *Methods in Ecology and Evolution*, 7(9): 1082-1091.

ANEXO 1

MINUTA DE LA PRIMERA REUNIÓN DEL PROYECTO ME004 COMPILACIÓN DE FONOTECA DE REFERENCIA DE LOS MURCIÉLAGOS INSECTÍVOROS DE MÉXICO: FASE I.

Puebla de los Angeles, Pue., a 30 de octubre del 2014.

En el marco del XII Congreso Nacional de Mastozoología

La reunión tuvo lugar día 27 de octubre de 2014 de 14:00-16:00, dada la extensión de los puntos a discutir, se continuó con la reunión el día jueves 30 de 14:30 a 16:00, ambas en la Sala 2 de la Unidad de Seminarios de la Benemérita Universidad Autónoma de Puebla.

ORDEN DEL DIA

- 1. Lista de asistencia.
- 2. Presentación y aprobación de la orden del día.
- 3. Inclusión dentro de la propuesta de personas interesadas en participar.
- 4. Avances del proyecto y revisión rápida de la última versión enviada a CONABIO.
- 5. Discusión de la metodología y realización de un guía al respecto.
- 6. Lugares y fechas de los talleres
- 7. Las salidas de campo
- 8. Recursos financieros
- 9. Se sugiere la elección de un tesorero(a) de los recursos otorgados por CONABIO.
- 10. Elección de coordinador general y coordinadores regionales
- 11. Ubicación del servidor donde se almacenarán los datos generados

- 12. Determinar quiénes serán los expertos en validar la identificación de espectrogramas y la identificación de especímenes.
- 13. Contratación del técnico
- 14. Apertura de los talleres a personas interesadas de Latinoamérica.
- 15. Asuntos generales.

ACUERDOS

1. Lista de asistencia

Una vez reunidos los participantes se inició la reunión. Se anexa la lista de asistencia de los días 27 y 30.

2. Presentación y aprobación de la orden del día

Los presentes aprobaron el orden del día de la primera reunión del proyecto con fecha 27 de octubre de 2014.

3. Inclusión dentro de la propuesta de personas interesadas en participar.

Ingreso de sus datos de contacto para incluirlos en envíos de actualizaciones.

Algunas personas más fueron incluidas como participantes en el cuadro de regiones propuesto a la CONABIO. Los coordinadores de región se comunicarán con ellos para que se mantengan informados y al pendiente de la información que circule a través de los mismos.

- 4. Avances del proyecto y revisión rápida de la última versión enviada a CONABIO.
- a) Surgieron dudas de la regionalización del país, a este respecto, quedo de la siguiente manera.

Región Californiana (Baja California, Baja California Sur, Sonora).

Región Noroeste (Durango, Sinaloa)

Región Occidente (Colima, Navarit, Jalisco, Aguascalientes)

Región Oriente (Puebla, Tlaxcala y Veracruz)

Región Centronorte (Guanajuato y San Luis Potosí)

Región Centrosur (Distrito Federal, Estado de México, Morelos, Hidalgo y Querétaro)
Región Sureste (Campeche, Quintana Roo y Yucatán)

Región Suroeste (Chiapas, Oaxaca y Tabasco)

b) Se informó que el detector considerado para el estudio es el UltrasoundGate modelo 116He, con micrófonos CM16/CMPA, uno por región. Así como tabletas, discos duros, licencias de los programas Sonobat y Batsound y redes por región. Cada coordinador regional se encargará de organizar el material entre los participantes de su región.

5. Discusión de la metodología y realización de un guía al respecto.

Para que sirva de referencia a todos los participantes para homogenizar el trabajo de campo.

- a) Se planteó la necesidad de determinar cómo se resolverá la metodología para entregarle a CONABIO el material convenido (1000 grabaciones al final del proyecto). Después de una breve discusión entre los participantes, se acordó que los representantes del grupo de trabajo, serán quienes retomarán la metodología proporcionada a la CONABIO en el proyecto, para discutir y analizar la conveniencia y eficacia de lo propuesto. La reunión para este fin se agendo el día 19 de diciembre de 2014 en la Escuela Nacional de Ciencias Biológicas en D. F. El Dr. Jorge Ortega propuso este lugar debido a la facilidad que tendrían los coordinadores para desplazarse al mismo.
- b) Adicionalmente, se acordó la redacción de un manual (en lo sucesivo referido como, manual de campo) que, paso a paso, guie a los participantes en la toma de datos y resolución de algunas dudas para la toma de muestras en grupos o especies de identificación complicada durante el trabajo de campo. En este manual también se incluirá una descripción amplia y completa de la manera de colectar y preservar las muestras de los individuos capturados, dependiendo de los análisis que más adelante se determine llevar a cabo. El Dr. Jorge Ortega quedo como encargado de redactar esta parte del

manual. Así mismo, se elaborará un manual de operación que indique quien o quienes se encargarán de distribuir los recursos monetarios para las salidas de campo, los procesos a seguir para la comprobación de gastos, los gastos que pueden ser cargados al proyecto, entre otros.

6. Lugares y fechas de los talleres

Considerar la realización de talleres en áreas naturales protegidas o estaciones biológicas dada la conveniencia que se tendría para practicar las técnicas de obtención de espectrogramas. Además, que los organizadores vean la posibilidad de gestionar recursos para apoyar los gastos. Así, si hay excedentes, puedan aplicarse a salidas de campo u otros rubros.

Se propusieron las siguientes opciones:

La Mancha, Ver. Dr. Antonio Guillén

Celestún, Yuc. M. en C. Javier Sosa

Sierra de Huautla, Mor. Dra. Lorena Orozco

Amatlán Dra. Areli Rizo

Tehuacán, Pue. Dr. Jorge Ortega

Las Joyas, Manantlán, Jal. Dr. Ignacio Iñiguez

Los participantes que propusieron alguna área, acordaron que investigarán costos de estancia, que serán discutidos en la reunión del 19 de diciembre del presente, para determinar la conveniencia de estos para los talleres.

7. Las salidas de campo.

Pudieran ser anexas a las salidas de campo de otros proyectos de los participantes, para ser más eficientes en la aplicación de recursos.

Se acordó, que los participantes de cada región, podrán organizarse de la manera que les parezca más apropiada para la aplicación de recursos correspondientes a su región, siempre que se observe su contribución a los objetivos y productos prometidos a

8. Recursos financieros.

Todos los participantes estuvieron de acuerdo en que los recursos para salidas sean divididos por equipos de trabajo.

9. Se sugiere la elección de un tesorero(a) de los recursos otorgados por CONABIO.

Este deberá estar en constante comunicación con el tesorero(a) la AMMAC para llevar a cabo la organización de gastos de manera suficiente.

Se habló de una dispersión de recursos a través de las instituciones de los investigadores, pero dadas las condiciones burocráticas de las instituciones, se consideró que sea directamente a través de la AMMAC el manejo de recursos.

- a) Al momento de la reunión no se consideró necesario el nombramiento de un (a) tesorero (a), debido a que la AMMAC cuenta con uno dentro de su mesa directiva.
- b) El Dr. Jorge Servín como presidente de la AMMAC menciona que es posible que la AMMAC requiera un porcentaje de hasta 5% del proyecto, como gastos de administración. Y que, este porcentaje está a consideración, dado que la AMMAC tiene como propósito a mediano y largo plazo facilitar e impulsar proyectos como este, en el que los miembros de la asociación pueden acceder a recursos federales.

10. Elección de coordinador general y coordinadores regionales

Se manifestó la necesidad de elegir un coordinador general, dado que el Dr. Briones termina su periodo como presidente de la AMMAC el próximo mes de octubre. Además de contemplarse la pertinencia de nombrar un coordinador y/o representante por región.

a) Se asume que el representante legal ante la CONABIO debe ser el presidente en turno de la AMMAC, por lo que el Dr. Servín fungirá como tal, de la misma manera el Dr. Briones continuará como responsable del proyecto ante CONABIO.

b) Considerando la complejidad del proyecto, se acordó también que de forma interna al grupo se nombrarán dos coordinadores técnicos: Dr. Antonio Guillén y la Dra. Cristina MacSwiney. Así como ocho coordinadores regionales, que quedaron junto con los participantes de la siguiente manera:

Regiones	Participantes	Coordinador
1 Región Californiana	Aldo de la Parra, Miguel A. León	Dra. Patricia Cortes
(Baja California, Baja	Tapia,	
California Sur, Sonora)		
2 Región Noroeste		Dra. Celia López
(Durango, Sinaloa)		
3 Región Occidente	Sergio Guerrero, Silvia Zalapa,	Dr. Ignacio Iñiguez
(Colima, Nayarit,	Jazmín Osorio	
Jalisco,		
Aguascalientes)		
4 Región Oriente	Lorena Orozco, Rosi Badillo	Dra. Cristina MacSwiney
(Puebla, Tlaxcala y		
Veracruz)		
5 Región Centronorte	Gloria Magaña, Juan Carlos López,	Dr. Jorge Ortega
(Guanajuato y San	Cinthya Elizalde,	
Luis Potosí)		
6 Región Centrosur	Areli Rizo, Lorena Orozco, Jorge	M.C. Lorena Orozco
(Distrito Federal,	Ortega, Antonio Guillén,	
Estado de México,		
Morelos, Hidalgo y		
Querétaro)		

7 Región Sureste	Cristina MacSwiney, Jorge Vargas,	Dra. Celia Sélem Salas
(Campeche, Quintana	Lorena Orozco, Javier Sosa, Jorge	
Roo y Yucatán)	Ortega, Juan Pech	
8 Región Suroeste	Miguel Briones-Salas, Juan de Dios	Dr. Rafael Ávila
(Chiapas, Oaxaca y	Valdés, Margarita Garcia, Antonio	
Tabasco)	Guillén	
Otras regiones	Rafael Ávila-Flores	
Nuevo León		

11. Ubicación del servidor donde se almacenarán los datos generados

Los participantes estuvieron de acuerdo que la ubicación del servidor y del técnico a cargo de la información, debería ser donde se encuentren los coordinadores técnicos, en este caso, en Xalapa.

12. Determinar quiénes serán los expertos en validar la identificación de espectrogramas y la identificación de especímenes.

Dado que, la mayoría de expertos se encuentra agrupada en este proyecto, se consideró qué durante la reunión de diciembre, se discutirá quienes conformarán el grupo de validación y el grupo de análisis de información.

13. Contratación del técnico

La contratación se hará por medio de la recepción de CV, que serán evaluados por los ocho representantes regionales.

El técnico deberá poseer cierto perfil para llevar a cabo el trabajo que se le encomiende durante el proyecto. La reunión de coordinadores determinara el perfil y aptitudes requeridas, que resultarán en una convocatoria para encontrar a la persona adecuada en el puesto.

14. Apertura de los talleres a personas interesadas de Latinoamérica.

La asistencia de este tipo de participantes debería estar sujeta a un pago (ya que no se puede cubrir por parte del proyecto CONABIO) y a un límite de asistentes "no mexicanos" por taller. La M. C. Lorena Orozco propuso este punto, ya que en el COLAM (Quito) muchas personas se acercaron preguntando de la posibilidad de cursos y entrenamiento en detección ultrasónica. Considera que incluir esto en los talleres, nos permite vincularnos y crear una red, que pueda facilitar el estudio de especies que tienen una distribución más amplia en el continente.

Este punto quedo pendiente, debido a que se consideró pertinente dar prioridad a la organización del proyecto y una vez hecho esto, reconsiderar la inclusión de personas de Latinoamérica.

15. Asuntos generales

- Comunicar que dentro del Congreso se llevará a cabo un simposio de ecolocalización a cargo del Dr. Antonio Guillén, al que todos los participantes del proyecto están cordialmente invitados, posterior a esta se proseguirá con la reunión de los participantes del proyecto.

Después de la sesión de ecolocalización, se continuó con la reunión, en la que se dio seguimiento a algunos de los puntos anteriores y cuyos acuerdos están plasmados en el número correspondiente.

Participantes presentes en la Primera reunión de trabajo del proyecto ME004 de CONABIO

Participante	Firma	ı
Correo electrónico Dr. Antonio Guillén Servent		Н
antonio,guillen@inecol.mx		П
Dr. Ignacio Íñiguez Dávalos		Ħ
Dr. Jorge A. Vargas Contreras		H
Dr. Juan Pech Canché		H
Dr. Miguel Angel Briones Salas		١
Dr. Rafael Ávila Flores		Ħ
Dr. Ricardo López Vilchis		H
rlw@xanum.uam.mx; Dr. Victor Sánchez-Cordero Dávila		
victor@ib.unam.mx Dra. Celia I. Sélem Salas		5
ssalas@tunku.uady.mx Dra. Celia López		
clgonzal@ipn.mx Dra. Cristina MacSwiney González	13	H
Dra. Patricia Cortés Calva		H
ocortes04@cibnor.mx;		Н
M. C. Javier E. Sosa Escalante		П
M. C. Lorena Orozco Lugo zotz@uaem.mx		
M. C. Margarita García Luis		Ħ
M. C. Matías Martínez Coronel		H
M. C. Verónica Zamora Gutiérrez		H
) L. Oites		Н
De Jaye Oster		
hiel Famored fortial		
Dro, Areli Rizo Aguilar		
ovellinon voemmx Torge Servin M		
sentin @ colleo. xoc+Jam.		1

ANEXO 2

MINUTA DE LA SEGUNDA REUNIÓN DEL PROYECTO ME004 COMPILACIÓN DE FONOTECA DE REFERENCIA DE LOS MURCIÉLAGOS INSECTÍVOROS DE MÉXICO: FASE I.

Ciudad de México, a 29 de abril del 2016.

La reunión tuvo lugar el día 29 de abril de 2016 de 09:00-19:00, en la Sala de Videoconferencias del Instituto de Biología de la Universidad Nacional Autónoma de México, Ciudad de México.

ORDEN DEL DIA

- 1.- Bienvenida y lista de asistencia
- 2.- Presentación y aprobación del orden del día
- 3.- Elección de un secretario
- 4.- Ratificación y/o modificación del coordinador general, coordinadores técnicos y coordinadores de zona.
- 5.- Funciones y actividades del coordinador general, coordinadores técnicos y coordinadores de zona.
- 6.- Organización de grupos regionales. Estados y personas
- 7.- Elaboración de manual de campo
- 8.- Bases de datos. Formato de metadatos de ejemplares, grabaciones y fotografías
- 9.- Propuesta de procedimiento de validación de grabaciones para su ingreso
- 10.- Diseño de la fonoteca Nacional
- 11.- Relación de grabaciones preexistentes
- 12.- Trabajo de campo
- 13.- Trabajo de campo. Equipo: Designación y uso

COMIDA

- 14.- Talleres regionales
- 15.- Contratación de técnicos
- 16.- Reglamento interno. Productos y créditos
- 17.- Manejo del presupuesto. Aclaraciones y dudas
- 18.- Asuntos generales

ACUERDOS

1.- Bienvenida y lista de asistencia.

El Dr. Miguel Briones dio la bienvenida y pidió a los asistentes presentarse. La lista de asistencia fue firmada por todos los participantes y se anexa al final de este documento.

2.- Presentación y aprobación del orden del día.

Todos los participantes estuvieron de acuerdo con el orden del día.

3.- Elección de un secretario.

Se acordó que la M. en C. Margarita García Luis fuese la secretaria del proyecto (durante las reuniones) y de ser posible se incorporará como técnico más adelante (probablemente a partir de enero de 2017).

4.- Ratificación y/o modificación del coordinador general, coordinadores técnicos y coordinadores regionales.

Todos los participantes estuvieron de acuerdo en mantener a los coordinadores designados anteriormente. Se incluyó como coordinador técnico en apoyo a la Dra. Cristina MacSwiney, a la Dra. Verónica Zamora.

5.- Funciones y actividades del coordinador general, coordinadores técnicos y coordinadores de zona.

Este punto quedo pendiente.

6.- Organización de grupos regionales. Estados y personas.

Se acordó que cada coordinador regional enviará al coordinador general, una lista de las personas que estarán participando en el proyecto. Esta lista también incluirá, las colecciones que puedan almacenar tejidos y en las que se puedan depositar ejemplares registradas ante SEMARNAT, ya que se privilegiará el depósito de ejemplares en la región donde se colecto. Listado a entregarse el 6 de mayo 2016.

7.- Elaboración de Manual de Campo.

La Dra. Cristina MacSwiney enviará las normas editoriales que deberá seguir las secciones del manuscrito. La extensión máxima de las secciones del manual de 10 cuartillas. Fecha comprometida para tener un borrador de este documento, 27 de mayo de 2016 .

8.- Bases de datos. Formato de metadatos de ejemplares, grabaciones y fotografías.

El diseño de las hojas de campo estará a cargo de la Dr. Celia López, apoyada por la Dra. Lorena Orozco, quien colectará la información referente a las consideraciones específicas de cada región, para la identificación de especies. Esa información probablemente deba ser considerada para generar algunos campos de las hojas de metadatos. La estructura de la base de datos será coordinada por la Dra. Celia López en conjunto con CONABIO. El Lic. Julián Equihua propuso que se genere una plataforma amigable para la captura de datos de campo.

9.- Propuesta de procedimiento de validación de grabaciones para su ingreso.

El protocolo para el procedimiento será en general el siguiente: El servidor recoge la información, el sistema automáticamente enviará la grabación y metadatos ingresados

a uno de los validadores para su revisión. Si hay un error se regresa a quien envío para su corrección.

Se propone que se mantengan al Dr. Joaquín Arroyo, Dra. Celia López, Dr. Sergio Ticul en el comité de validación taxonómica de ejemplares. En el comité de validación acústica queda pendiente quienes lo conformarán. Para el día 6 de mayo 2016 se acordó tener una lista de expertos en estos dos comités.

10.- Diseño de la fonoteca Nacional.

El personal de la CONABIO manifestó que con ellos se pueden generar un diseño de la fonoteca accesible.

11.- Relación de grabaciones preexistentes.

La Dra. Patricia Cortés enviará un formato para identificar quien tiene grabaciones, con qué equipo han sido adquiridas y el número de estas, para el día 6 de mayo 2016.

12.- Trabajo de campo.

Se deberá hacer un repaso de los métodos de captura para la homogenización de estos entre los participantes en la reunión-taller.

La Dra. Cristina MacSwiney pide a los coordinadores regionales tener un listado de especies de su región, para que con el trabajo de campo se tenga la mayor representación de sonidos, no solo de especies sino también en cuanto a cobertura geográfica.

La Dra. Verónica Zamora enviará un mapa del país dividido en cuadriculas de 100x100 km para que los coordinadores ubiquen los sitios potenciales de muestreo.

La Dra. Celia López manifestó la importancia de considerar cual será el límite para las salidas de campo: 1) cantidad de recursos asignada por región o, 2) número de sitios. Debido principalmente a que la colecta en algunas regiones el traslado es mayor, la abundancia de individuos y número de especies es menor.

Por lo anterior, se acordó que los coordinadores deberán revisar el costo aproximado por salida por 12 sitios en su región. Este presupuesto deberán llevarlo preparado para el curso reunión de todos los coordinadores.

El Dr. Jorge Ortega propone obtener un permiso de colecta para el proyecto, el permiso saldrá a nombre del Dr. Briones al ser el coordinador general del proyecto. Se acordó entre los participantes, que es una buena opción, el Dr. Ortega apoyará al Dr. Briones para el trámite.

13.- Trabajo de campo. Equipo: Designación y uso.

Se distinguen dos opciones para la designación de equipo al término del proyecto.

1) que AMMAC de en comodato los equipos a las personas que sean designadas por el grupo. 2) Comité que evalué solicitudes de uso de equipo realizadas por socios AMMAC para el uso de equipo. Queda pendiente de decisión.

La Dra. Lorena Orozco hace notar la importancia de contratar un seguro para los detectores. La Dra. Cristina MacSwiney, bajo esa misma línea, manifiesta la importancia de pensar en destinar una parte del presupuesto para la limpieza y mantenimiento de los equipos.

Durante la conformación del proyecto se contempló la compra de un servidor para el almacenamiento de las grabaciones. Sin embargo, el personal de la CONABIO ofrece los recursos de la institución para el almacenamiento de la información, así como su experiencia para mantener la entrada de información a sus servidores. Los Dres. Jorge Ortega y Celia López plantean la opción de contratar una cuenta de almacenamiento masivo en Dropbox. Los participantes acuerdan no adquirir el servidor y el UPS que lo acompaña para usar esos recursos en otras partidas.

14.- Talleres regionales.

Se modificó el anterior acuerdo sobre el primer taller, se planteó primero la sierra de Huahutla como opción. Sin embargo, por conveniencia en la captura y número de especies de murciélagos, quedo establecido que La Mancha, Ver., será la sede de la

primera reunión-taller. En este lugar el costo del alojamiento es de \$100 por noche por persona. Los servicios de comida se pueden contratar con una persona que regularmente es cocinera en la estación. Se considera una asistencia de aproximadamente 20 personas al taller. Se establece como fecha del curso del 6 al 10 de junio 2016. Se generará a la brevedad un programa de actividades del primer taller.

Los talleres restantes (Norte, Centro y Sur) serán organizados por los coordinadores regionales y estará a su consideración las mejores fechas y sitios para su realización. En estos, se abrirá espacio para personas que quieran asistir a estos y paguen su lugar.

15.- Contratación de técnicos.

Se manifestó la importancia de tener un técnico a partir de la siguiente reunióntaller, para que se familiarice con el proyecto y los métodos. Los coordinadores de región, coordinadores técnicos y coordinador general, revisarán los currículos disponibles, para evaluar quien es el mejor candidato para ser contratado para el proyecto y que en breve se incorpore a los trabajos.

16.- Reglamento interno. Productos y créditos.

Se acordó que habrá una lista de publicaciones, en las que habrá participación de todo el grupo o por región dependiendo de la publicación. Si algunos de los participantes generan otras ideas para aplicar a los datos generados durante el proyecto, deberán invitar a los participantes de la región o regiones correspondientes. Se acordó generar una lista de lineamientos base, para definir las participaciones de los colaboradores que no forman parte del grupo núcleo y que también aporten grabaciones a la fonoteca. Los participantes del grupo núcleo recibirán una constancia por parte del coordinador general como participantes en el proyecto.

17.- Manejo del presupuesto. Aclaraciones y dudas.

Se pueden realizar cambio en las partidas siempre que se justifiquen y sean solicitadas al Coordinador general a través de correo electrónico, el coordinador hará llegar estos cambios a AMMAC, lo mismo aplicará con la solicitud de fondos.

18.- Asuntos generales.

La Dra. Cristina MacSwiney sugirió que debe haber un nombre que identifique al grupo núcleo que lleva este proyecto. Los participantes aceptan la propuesta y se generan varios nombres. Estas opciones se llevaron a votación y finalmente queda como identificador el nombre SonoZotz-AMMAC. Se acuerda abrir una convocatoria durante el congreso de Mastozoología en Tuxtla Gutiérrez Chiapas, para el logo del grupo. El M. C. Javier Sosa, vicepresidente de la AMMAC se encargará de enviar las bases para el concurso para el 6 de mayo de 2016.

PRIMERA REUNIÓN OFICIAL DE ORGANIZACIÓN DEL PROYECTO:

"Compilación de biblioteca de referencia de los murciélagos Insectívoros de México: Fase I".

Instituto de Biología, UNAM.29 de abril 2016

	itituto de Biología, UNAM.29 de Institución	Cargo en el proyecto	Firma	
Nombre 1	IPN			
lelia lopez	100			
Veronica Zumora				
Calia Selem Salas	UADY.			
Lorge Ortego Rys	171			
5 Rafael Avila Flores	UJAT			
Jose Jun Flore yul'MZ	UWAU		_	
Ma Cristina Mac Swiney 6	- Universidud Verac	nzan		
8 Hadaria Cortis Calva			-13	
9 Everardo Robrado Esquivelz	eta Conabio			
.0 Julian Equition Benitez	Conabio		1	
Marganta Garcia luis	IPN	Secularia Viajecto	4.0	
alina Gabriela Walraj Gamba	auguac	Secretaria aulli	aC.	
Carmen lorera Orozzo lua				

PRIMERA REUNIÓN OFICIAL DE ORGANIZACIÓN DEL PROYECTO:

"Compilación de biblioteca de referencia de los murciélagos insectívoros de México: Fase I".

Instituto de Biología, UNAM.29 de abril 2016

Nombre	Instituto de Biología, UNAM.29 d	Cargo en el proyecto	[Fi-man]
14		cargo en el proyecto	Firma
Malipalli (cites Marcial	AMMAC	Texase AHMAC	
adriana Valera Berma	ejo CONABIO-SCE	000 01 1-10	
DUTOMIO BULLET EN	ISUT INECOL	COORDINGPOR	
Jacier Enrique Sosu Escala	inte AMMAC.	Vicepresides to	
LUIS TEMACIO IMIGUEZ	D. UNIV. DE GUAD	PALAJIN COOKD. REGIONAL	
19 JORGE SERVIN M.	AMMAC	Presidente	
MIGUEL BRIONES SALAS	CIIDIR-DAX., 1PM	Coordinador bral.	
21			
22			
23			
24			
25			

ANEXO 3

MINUTA DE LA PRIMERA REUNIÓN TALLER DEL PROYECTO ME004 COMPILACIÓN DE FONOTECA DE REFERENCIA DE LOS MURCIÉLAGOS INSECTÍVOROS DE MÉXICO: FASE I,

Estación biológica de la Mancha, Veracruz, a 10 de junio de 2016.

La reunión taller tuvo lugar los días 7 al 10 de junio de 2016, de 09:00-20:00, en el laboratorio de la Estación Biológica de La Mancha.

ORDEN DEL DIA

Lunes 6

- 1. Llegada, registro y distribución de habitaciones.
- 2. Recorrido por la estación y hábitats aledaños.

Martes 7

1. Introducción, mecánica del taller y objetivos

Se realizó la presentación del taller y los objetivos del mismo a los participantes.

Además, se presentó al M. C. Fernando Montiel como la persona a contratar para ser el primer técnico del proyecto. Se le indico que debe seguir los procedimientos establecidos por la AMMAC y proporcionar la información necesaria para ser contratado.

- 2. Presentación y discusión del 'Protocolo general' para la toma de datos.
- 3. Presentación y discusión del 'Protocolo de captura de murciélagos' para la toma de datos.
- a) Se realizaron observaciones por todos los asistentes, quienes acordaron la realización de modificaciones a este. Estas modificaciones serán entregadas a CONABIO, para que sean tomadas en cuenta al momento de ser recibido el primer informe, el próximo 15 de septiembre de 2016. El Dr. Briones quedo a cargo del documento de las modificaciones que se desprendieron de la reunión.
- b) Se agregaron como co-coordinadores regionales a la Dra. Melina del Real (en apoyo al Dr. Jorge Ortega, región Centro Norte), Dr. Antonio Guillén (en apoyo a la Dra. Cristina

MacSwiney, región Oriente) y la Dra. Verónica Zamora (en apoyo a la Dra. Celia López, región Noroeste).

- 4. Transformación y representación del sonido para su análisis.
- 5. Características y manejo del equipo para el proyecto.
- 6. Presentación y discusión del 'Protocolo de grabación de llamados de referencia' para la toma de datos.

Durante la discusión de los detalles del protocolo, todos los participantes estuvieron de acuerdo en que se realice un padrón de colectores de la fonoteca. Sólo se considerarán colectores a la o las personas que acudan a alguno de los cuatro talleres del proyecto.

7. Primera Práctica de captura, identificación y grabación.

Miércoles 8

1. Presentación y discusión del protocolo de toma de muestras genéticas y remisión de muestras genéticas.

El Dr. Briones indicó que la solicitud de permiso de colecta ante SEMARNAT para el proyecto ya se ha entregado a las oficinas correspondientes.

- 2. Características y tipos de llamados de ecolocación de los murciélagos.
- 3. Grabaciones de calidad: relación señal/ruido, "aliasing", ecos, ruido electrónico, de insectos, de viento y lluvia.
- 4. Presentación y discusión del 'Protocolo de edición y medición de grabaciones para la toma de datos.
- 5. Uso de BatSoundPro y Sonobat para edición y medición de grabaciones de murciélagos.
- 6. Segunda Práctica de captura, identificación y grabación.

Jueves 9

- 1. Manejo y vaciado de hojas de datos de campo y electrónicas.
- 2. Proceso para someter grabaciones editadas y metadatos.
- 3. Ejercicio completo de vaciado de información y edición de grabaciones.

Viernes 10

1. Identificación de especies problemáticas.

Se propuso trabajar sólo con 3 afinidades y no 8 regiones para simplificar y no repetir información: 1) especies desérticas y templadas, 2) especies de selvas secas de la vertiente pacifica, 3) especies de selvas húmedas de la vertiente del Golfo.

- 2. Presentación y discusión del 'Protocolo de validación de grabaciones y taxonomía',
- 3. Respaldo y proceso de archivado de la información colectada.
- a) Se acordó usar los recursos que no se gastarán en la compra del servidor DELL y UPS, para subsanar partidas que requieran mayor presupuesto (por ejemplo, realización de talleres, salidas de campo).
- b) El personal de CONABIO indicó que es posible que se realicen cambio de partidas en el presupuesto. Estos cambios deben notificarse por escrito.
- 4. Discusión general del mapa de sitios propuestos y asuntos generales.
- a) Se acordó que se debe realizar un documento con los lineamientos para los créditos correspondientes de los trabajos publicables que se desprendan del trabajo del proyecto.
- b) Se propuso la realización de una reunión durante el Congreso Nacional de Mastozoología a celebrarse del 24 al 28 de Octubre de 2016 en Tuxtla Gutiérrez, Chiapas. Con el fin de revisar los avances de los trabajos del proyecto.
- c) Se informó de la salida del Dr. Antonio Guillen como coordinador técnico, responsabilidad que compartía con la Dra. Cristina MacSwiney, debido principalmente a la sobrecarga de trabajo que presenta el Dr. Guillen. El retiro fue aceptado por la mayoría de los asistentes al taller, después de una breve exposición de los motivos del Dr. Guillén. En su lugar y retomando lo acordado en la reunión realizada el 29 de abril de 2016 en el Instituto de Biología de la UNAM, la Dra. Verónica Zamora estará apoyando como coordinadora técnica a la Dra. Cristina MacSwiney.

- d) Se realizó la descripción de la estructura general de los talleres regionales, estructura que podrá ser modificada a consideración de los coordinadores regionales, dadas las condiciones específicas de zonas de trabajo.
- e) Se mencionó nuevamente la necesidad de contar con un seguro para el desplazamiento de los equipos entre regiones. No se llegó a algún acuerdo concreto al respecto.

Asistentes al primer taller del Proyecto ME004 CONADIO AMMAC 6-10 Junio, 2016

Nombre Juan Manuel Pech Canché Lingel Garelo Rojas Commen lovena Orozro lugo Julian Equitiva adnana Valera Bermejo Soci Antonio Guerrero Erriquez LUIS IGMACIO IMIGUEZ DAVALOS Jesus Carlo Cuercos González Celia Isela Selem Salas Veronica Zamoia Gatierrez Ratael Avila Flores - Jorge Octega Keyer Melina Del Real Monroy Ternando Javier Hontiel Preyes ANTONIO GUILLEN SERVENT Cristina Hac Swiney Gonzalez Hatricia Cortés Calva

firma Leireo zotzevaem.com julian , equitura @ combo gos ma avalera (Diconabo gob mx aguerrero e vaern. mx ssalas @ correo, vady, mx autonio. puilleup inecol. mx Dortes & 4 @ cibnor, mx

Mombre

Marganta Geralo E.

Everardo G. Robredo E.

Miguel Briones - Salas

ANEXO 4

PROGRAMA DE ACTIVIDADES, TALLER REGIONAL NORTE PROYECTO ME004 CONABIO-AMMAC

2 al 4 de septiembre 2016

CIIDIR Unidad Durango, Instituto Politécnico Nacional

Durango, Durango

1 septiembre, jueves

Reunión preliminar organizadores, preparación de material y equipo, llegada de participantes

2 septiembre, viernes

0800-0900 Desayuno

0900-1030 Bienvenida, presentación ejecutiva del proyecto, presentación de la plataforma, compromisos y beneficios para los colaboradores, Dra. Verónica Zamora Gutiérrez

1030-1200 Nociones básicas de ecolocalización, Dra. Verónica Zamora Gutiérrez

1200-1300 Nociones básicas de detección acústica, Dra. Verónica Zamora Gutiérrez

1300-1430 Presentación de protocolos de trabajo, Dra. Celia López González

Localidad, datos ambientales y captura

Preparación de ejemplares

Fotografía

Toma de muestras de tejido, Dr. Jorge Ortega

1430-1600 Comida

1600-1730 Uso del equipo de grabación, protocolo de toma de datos de grabación, Dra.

Celia López González

1730 en adelante. Primera práctica de captura, grabación e implementación de protocolos.

El Nayar, ciudad de Durango. Procesamiento de ejemplares y grabación en las instalaciones

del CIIDIR.

3 de septiembre, sábado

0800-0900 Desayuno

0900-1100 Preparación de ejemplares de museo y toma de datos en catálogo de

preparación. Dr. Juan Carlos López Vidal, Dra. Cynthia Elizalde Arellano

1100-1300 Vaciado de datos en la computadora, preparación de datos para su ingreso a la

plataforma, ejercicio con grabaciones de la noche anterior, Dra. Melina del Real Monroy

1300-1430 Edición de secuencias, Dra. Verónica Zamora Gutiérrez

1430-1600 Comida

1600-1700 Edición de secuencias (cont.) Dra. Verónica Zamora Gutiérrez

1700 en adelante: Segunda práctica de captura, grabación e implementación de protocolos,

"El Pueblito," ciudad de Durango. Procesamiento de ejemplares y grabación en las

instalaciones del CIIDIR.

4 de septiembre, Domingo

0800-0900 Desayuno

0900-1100 Vaciado de datos a la computadora: todos

2

1100-1200 Aplicaciones de la información generada, uso y propiedad de datos generados, Dr. Jorge Ortega

1200-1300 Dudas, comentarios y conclusiones, organización de las colectas para la Zona Noroeste*

1300-1430 Identificación de especies de murciélagos en campo: Celia y todos.

1430-1600 Comida fuera del CIIDIR

*pendiente

Notas:

El desayuno y dos comidas se servirán en las instalaciones del CIIDIR Durango, el costo corre por cuenta del proyecto. La cena consistirá de comida ligera que podamos llevar a "campo" o bien podemos regresar a Durango y comer en algún lugar informal (hamburguesas, tacos, o similar) antes de regresar al CIIDIR a procesar los ejemplares capturados. La última comida se hará fuera del CIIDIR, el sitio se decidirá durante el taller, esta comida también será financiada por el proyecto.

Asistir a la sesión de identificación de murciélagos queda a discreción de los asistentes. Se recomienda que traigan consigo problemas específicos de identificación para poder hacer el ejercicio dirigido y eficiente. No se pretende que sea una clase sobre quirópteros, más bien un ejercicio de aclaración de dudas, ya que todos los asistentes tienen de poca a mucha experiencia trabajando con murciélagos. Si alguno de ustedes considera que quiere continuar el ejercicio después de la comida, es posible.

Los participantes de otras regiones, por favor traer equipos de grabación para tener mas material de trabajo.

Se proveerá de material de preparación de ejemplares, así como equipo de colecta y botas para el agua.

Material personal que deberán traer los asistentes:

Lámpara de cabeza

Guantes para manipular murciélagos

Botas si se desea, pero no son estrictamente necesarias

Camisa de mangas largas para evitar los mosquitos

Repelente contra insectos

Manga o impermeable, es posible que continúe lloviendo a principios de septiembre

Laptop (recomendable)

Cuaderno de notas

Una chaqueta ligera, la temperatura en Durango puede bajar a unos 16° C por la

noche

Cámara fotográfica

Un juego de ropa que se pueda mojar

Claves de identificación (recomendable)

ANEXO 5

PROGRAMA DE ACTIVIDADES TALLER REGIONAL SUR PROYECTO ME004 CONABIO-AMMAC,

8 al 10 de septiembre, 2016

CIIDIR Unidad Oaxaca, Instituto Politécnico Nacional, Oaxaca, Oaxaca

Miércoles 7 de septiembre

18:00-21:00. Reunión preliminar de organizadores, preparación de material y equipo. Llegada de participantes y traslado al hotel*.

*Hotel Hacienda La Noria. Av. Eduardo Mata # 1918, Fraccionamiento San José La Noria. Tel. (951) 514-7555. Reservación a nombre de Margarita García Luis (No. de reservación 168064). Registro de entrada a partir de las 13:00 h.

Jueves 8 septiembre

07:50-08:00. Reunión en la entrada principal del CIIDIR Unidad Oaxaca

08:00-09:00. Desayuno

09:00-10:30. Bienvenida, presentación ejecutiva del proyecto, presentación de la plataforma, compromisos y beneficios para los colaboradores (Miguel Ángel Briones Salas)

10:30-11:45. Nociones básicas de ecolocalización (Verónica Zamora Gutiérrez)

11:45-12:00. Receso

12:00-13:00. Nociones básicas de detección acústica (Verónica Zamora Gutiérrez)

13:00-14:30. Presentación de protocolos de trabajo:

- Datos de localidad, condiciones ambientales y captura (Rafael Ávila Flores)
- Preparación de ejemplares (Celia Selem Salas)
- Fotografía (Margarita García Luis)
- Toma de muestras de tejido (Celia Selem Salas y Verónica Zamora Gutiérrez)

14:00-15:00. Comida

16:00-18:00. Uso del equipo de grabación y descripción del protocolo de grabación (Verónica Zamora Gutiérrez)

18:00-24:00. Primera práctica de captura, grabación e implementación de protocolos. San Miguel Tlanichico, Trinidad Zaachila. Procesamiento de ejemplares y grabación en las instalaciones del CIIDIR o en la localidad de captura.

Viernes 9 de septiembre

08:00-09:00. Desayuno

09:00-10:00. Aclaración de dudas sobre la práctica de la noche anterior (Todos)

10:00-11:45. Revisión de grabaciones y edición de secuencias. Ejercicio con grabaciones de la noche anterior (Verónica Zamora Gutiérrez y Rafael Ávila Flores)

11:45-12:00. Receso

12:00-13:00. Continuación. Revisión de grabaciones y edición de secuencias. Ejercicio con grabaciones de la noche anterior (Verónica Zamora Gutiérrez y Rafael Ávila Flores)

13:00-14:00. Vaciado de datos en la computadora y preparación de datos para su ingreso a la plataforma. Ejercicio con grabaciones de la noche anterior (Todos)

14:00-15:00. Comida

15:00-18:00. Continuación. Vaciado de datos en la computadora y preparación de datos para su ingreso a la plataforma. Ejercicio con grabaciones de la noche anterior (Todos)

18:00-24:00. Segunda práctica de captura, grabación e implementación de protocolos. San Miguel Tlanichico, Trinidad Zaachila. Procesamiento de ejemplares y grabación en las instalaciones del CIIDIR.

Sábado 10 de septiembre

08:00-09:00. Desayuno

09:00-10:00. Vaciado de datos a la computadora (Todos)

10:00-11:00. Aplicaciones de la información generada, uso y propiedad de datos generados (Celia Selem Salas)

11:00-12:00. Organización de las colectas para la las zonas Sureste y Suroeste (Celia Selem Salas y Rafael Ávila Flores)

12:00-13:00. Dudas, comentarios y conclusiones (Todos)

13:00-15:00. Identificación y preparación de especímenes en campo** (Celia Selem Salas)

15:00-16:00. Comida fuera del CIIDIR

** Estas actividades son opcionales, dependiendo de la experiencia de los participantes. En el caso de la identificación, se recomienda que cada persona lleve problemas específicos de identificación para poder hacer el ejercicio dirigido y eficiente. No se trata de una clase sobre quirópteros, sino de un ejercicio de aclaración de dudas en el que participaremos todos los asistentes.

Notas:

El desayuno se servirá en un comedor cercano al CIIDIR Oaxaca los días 8, 9 y 10. Las comidas del día 8 y 9 se servirán en las instalaciones del CIIDIR Oaxaca. El costo corre por cuenta del proyecto. La cena consistirá de comida ligera que podamos llevar a campo antes de procesar los ejemplares capturados en el sitio o al regresar al CIIDIR. La última comida (sábado 10) se hará fuera del CIIDIR (lugar por definir), aunque esto dependerá de la disponibilidad de tiempo de los asistentes. Esta comida también será financiada por el proyecto. El sitio de captura es cercano y accesible (los autos entran hasta unos 5 m del refugio).

Material personal que deberán traer los asistentes:

- Lámpara de cabeza
- Guantes para manipular murciélagos
- Botas de campo si se desea, pero no son estrictamente necesarias
- Camisa de manga larga para evitar los mosquitos
- Repelente contra insectos
- Manga o impermeable
- Laptop (recomendable)
- Material de medición (opcional)
- Libreta de campo
- Chaqueta ligera
- Cámara fotográfica
- Claves de identificación (recomendable)
- Detector acústico (opcional)

ANEXO 6

MINUTA DEL TALLER REGIONAL CENTRO DEL PROYECTO ME004 COMPILACIÓN DE FONOTECA DE REFERENCIA DE LOS MURCIÉLAGOS INSECTÍVOROS DE MÉXICO: FASE I.

Instalaciones del Centro de Investigación en Biodiversidad y Conservación (CIByC,), Universidad Autónoma del Estado de Morelos (UAEM).

21 al 25 de septiembre de 2016, Cuernavaca, Morelos.

Objetivo: Organizar talleres de entrenamiento e intercambio en las metodologías de captura de murciélagos insectívoros y de obtención de grabaciones, así como de los protocolos de incorporación de material a la fonoteca de referencia nacional.

El entrenamiento de recursos humanos, nutrirá los grupos de trabajo y contribuirán a formar una red de profesionales capacitados en las técnicas de detección acústica.

PROGRAMA

Llegada a Cuernavaca, miércoles 21 de septiembre: Hospedaje y cena 8:30 p.m. en Hotel Villa Calmecac, Zacatecas 114 Esq. Tanque Col. Buenavista, Tel. (01 777) 3 -13 -29 -18 (Se anexa mapa al final del documento).

Importante: Lorena Orozco estará pendiente de la llegada de los participantes externos a la UAEM, por cualquier eventualidad o retraso contactarla en el siguiente número de celular (777) 218 – 06 -38.

DÍA 1 (jueves 22 de septiembre) Desayuno en Villa Calmecac: 8:00 a.m. Traslado a CIByC – UAEM: 9:00 a.m.

Sesiones teórico – prácticas matutinas: 9:30 a.m.

- Presentación ejecutiva del proyecto (30 min., Lorena)
- Compromisos y beneficios para los colaboradores (30 min., Ignacio)
- Nociones básicas de ecolocación (3:30 horas) (Toni y Lorena)
 Fundamentos de acústica: ¿Qué es la ecolocación?, Fundamentos de comportamiento ecolocador, Tipos de pulsos y secuencias, Ecolocación en el Neotrópico y el Neártico, Comportamiento de ecolocación e identificación acústica, Atenuaciones y ruidos.

Receso para comida: 2:00 p.m.

Sesiones teórico – prácticas vespertinas: 3:30 p.m

- Presentación de protocolos (3 horas)
 - Localidad y captura (Lorena/Ignacio)
 - o Grabación y uso de software/equipo (Toni)

Primera práctica de captura e implementación de protocolos: 6:30 p.m.

Regreso al hotel: 12:00 a.m.

DÍA 2 (viernes 23 de septiembre)

Desayuno en Villa Calmecac: 8:00 a.m.

Traslado a CIByC – UAEM: 9:00 a.m.

Sesiones teórico – prácticas matutinas: 9:30 a.m.

- Comportamiento de ecolocación e identificación acústica (continuación 1 hora, Toni).
 Tipos de detectores y transformación del sonido (30 min. Toni)
- Métodos de Captura y Obtención de grabaciones de referencia (1:30 horas, Toni/Lorena/Nacho)
- Presentación de protocolos (1:30 horas)
 - Fotografía y morfometría (Ignacio)
 - o Toma de muestras (Toni)
 - o Edición y medición de secuencias (Lorena)

Receso para comida: 2:00 p.m.

Sesiones teórico – prácticas vespertinas: 3:30 p.m

- Nociones básicas de clasificación de sonidos de ecolocación (1 hora) (Toni/Lorena)
- Práctica de edición y medición de secuencias (2 horas) (Toni /Lorena/Ignacio)

Segunda práctica de captura e implementación de protocolos: 6:30 p.m.

Regreso al hotel: 12:00 a.m.

DÍA 3 (sábado 24 de septiembre)

Desayuno en Villa Calmecac: 8:00 a.m.

Traslado a CIByC – UAEM: 9:30 a.m.

Sesiones teórico – prácticas matutinas: 10:00 a.m.

- Práctica de identificación acústica de especies (1 hora) (Toni/Lorena)
- Planeación, organización y logística para la toma de datos por región (1 hora, cada coordinador con los colaboradores de su región)
- Especies de difícil identificación (todos los colaboradores por región (1 hora)
- "Flujo de datos" y en su caso presentación y uso de plataforma (1 hora, Toni/Lorena/Ignacio)

Receso para comida: 2:00 p.m.

Sesiones teórico – prácticas vespertinas: 3:30 p.m

- Preparación de especímenes para museo (solo se tocará este tema en caso de ser necesario, 1 hora).
- Aplicaciones de la información generada (1/2 hora) (Ignacio/Toni)
- Uso y propiedad de datos (1/2 hora) (Ignacio)
- Dudas, comentarios y conclusiones (Todos)

Segunda práctica de captura e implementación de protocolos: 6:30 p.m.

Regreso al hotel: 12:00 a.m.

DÍA 4 (Domingo 25 de septiembre)

Desayuno en Villa Calmecac: 8:00 a.m.

EQUIPO Y MATERIAL REQUERIDO

Proporcionado por los organizadores:

- Proyector
- Rotafolios/pizarrón
- Marcadores
- Extensiones eléctricas
- Conexión inalámbrica (de ser posible)
- Impresora.

Proporcionado por los coordinadores:

- Protocolos del proyecto (un juego por colaborador)
- Hojas de datos (un juego por colaborador)
- Papelería
- Detectores ultrasónicos
- Material para grabación en tirolesa
- Cámara fotográfica
- Redes de 0.2 y 0.08 mm
- Postes, tensores y sacos
- Material de medición: vernier y pesolas
- Material y consumibles para colecta de muestras y preparación de ejemplares
- Guías de campo

Además, cada participante deberá traer:

- Computadora personal
- Guantes
- Lámparas

- Material de medición (opcional)
- Libreta de campo
- Cámara fotográfica (opcional)
- Equipo personal de campo

Lista de participantes

Dr. Luis Ignacio Iñiguez Dávalos (OC)

M.C. Martha Pilar Ibarra López (OC)

M.C. Héctor Leonel Ayala Téllez (OC)

Dr. Romeo Alberto Saldaña Vázquez (OC)

Biol. Marcial Alejandro Rojo Cruz (OC)

Pasante de Biol. Jonatan A. Romero (OC)

Dr. Antonio Guillén Servent (OR)

Dr. Juan Pech Canché (OR)

Biól. Alejandro Soto Castruita (OR)

Dr. Jorge Ayala Berdón (OR)

M. en C. Concepción López Tellez (OR)

M. en C. Carmen Lorena Orozco Lugo (CS)

Dra. Areli Rizo Aguilar (CS)

Dr. José Antonio Guerrero Enríquez (CS)

Dr. David Valenzuela Galván (CS)

Dr. José Cuauhtémoc Chávez Tovar (CS) Dr. Gerardo Sánchez Rojas (CS)

M.C. Fernando Javier Montiel Reyes (Técnico del proyecto).

Hilda del Rocío Hernández Vila (apoyo técnico)

María Concepción Gurrusquieta Navarro (apoyo técnico)

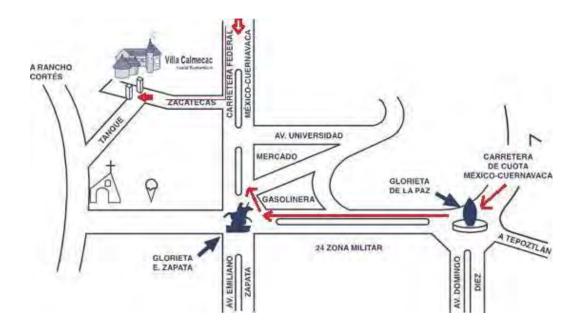
Ariana Hernández Lira (apoyo técnico)

Bárbara Campos (apoyo técnico).

Estudiantes:

Luis Gerardo Ávila Torresagatón

Blanca Natividad González


Zariñana Perla Zavala Ramos

Ana Cristel Lara

Núñez Fabrizio

Varela Boydo

Ubicación Hotel Villa Calmecac

ACTIVIDADES Y RESULTADOS DEL TALLER

En este taller participaron las regiones Centro, Occidente y Oriente. Las sesiones teóricas se llevaron a cabo en el auditorio del CIByC.

El taller tuvo una asistencia de 32 personas en las siguientes categorías de participación:

Programa de actividades con lo realizado en cada día.

Jueves 22 de septiembre

Sesiones teóricas – prácticas matutinas: 9:30 a.m.

- a) Presentación ejecutiva del proyecto (M. en C. Lorena Orozco): bienvenida a los participantes y exposición de los objetivos y metas del taller. Posteriormente se expuso el origen del proyecto así como los objetivos, productos generales esperados, estructura y organización del mismo. Se informó de los avances del proyecto a la fecha del taller (Fig. 1).
- b) Compromisos y beneficios para los colaboradores (Dr. Ignacio Iñiguez): se plantearon a detalle los productos específicos, así como los niveles de participación y responsabilidades de los colaboradores, coordinadores regionales, técnicos y general. También quedó claro lo que se necesita para colaborar o formar parte del proyecto, es decir, haber tomado alguno de los talleres o recibir entrenamiento y "certificación" por parte de alguno de los coordinadores regionales y asumir las responsabilidades de la toma de datos y colaboración.
- c) Nociones básicas de ecolocalización, fundamentos de acústica: ¿Qué es la ecolocalización?, fundamentos de comportamiento ecolocalizador, tipos de pulsos y secuencias, ecolocalización en el Neotrópico y el Neártico, comportamiento de ecolocalización e identificación acústica, atenuaciones y ruidos (Dr. Antonio Guillén): debido a que muchos de los asistentes tenían poca experiencia en los principios de ecolocalización y detección ultrasónica, se consideró importante hacer un repaso de los aspectos teóricos básicos sobre el tema, que además se volvieron fundamentales para las restantes secciones del taller, ya

que se emplearon de manera práctica, para la grabación, edición, medición y reconocimiento de patrones de emisión de familias o especies.

Sesiones teórico – prácticas vespertinas: 3:30 p.m

- a) Presentación de protocolos, localidad y captura (M. en C. Lorena Orozco/ Dr. Ignacio Iñiguez): se entregó a los participantes una copia de los protocolos y hojas de datos, para estudiar la forma correcta de llenado y responder a las dudas que surgieron. Se discutió sobre el ID de los ejemplares por resultar confuso, pero se llegó a la conclusión de que, dado el avance del proyecto y la discusión previa de los coordinadores regionales en el taller de "La Mancha", se deben uniformizar los entregables (grabaciones de secuencias, notas de voz, monitoreo, formatos digitales) al técnico, de acuerdo al protocolo del proyecto, aunque en campo cada investigador trabaje de una manera particular, dictada por su propia y amplia experiencia.
- b) Grabación y uso de software/equipo (Dr. Antonio Guillén): se contó con tres detectores y computadoras (de las tres regiones asistentes), se formaron grupos de trabajo para aprender las nociones básicas de uso del detector y software, como el ensamblado y tipo de micrófono, programación del detector, generación y etiquetado de archivos, etc. (Fig. 2).
- c) Primera práctica de captura e implementación de protocolos (6:30 p.m.): previo al taller, se pidieron los permisos correspondientes con las autoridades municipales para llevar a cabo las sesiones de captura y grabación de los murciélagos en dos parques urbanos, donde por experiencia previa se han capturado especies de la familia Molossidae y Vespertilionidae. Se colocaron redes de niebla de monofilamento sobre cuerpos de agua (estanques) donde los murciélagos bajan a beber agua tras la puesta del sol (Fig. 3). Una vez capturados los individuos se practicó el procesamiento de los mismos y el empleo de las hojas de datos del proyecto para anotar la información (Fig. 4).

Se capturaron individuos de *Molossus sinaloae* (Fig. 5), se llevó a cabo la toma de datos morfométricos y la identificación de los individuos y posteriormente la liberación y grabación de los mismos (Fig.6 y 7).

Figura 1.- Presentación del proyecto en el auditorio del CIByC, con los colaboradores de las tres regiones participantes en el Taller Centro.

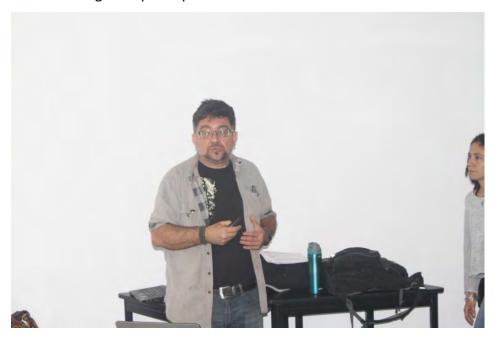


Figura 2. El Dr. Antonio Guillén, explicando el funcionamiento del detector y software.

Figura 3. Colocación de redes de niebla sobre estanques en el parque Solidaridad", para la captura de murciélagos.

Figura 4.- En la imagen el Dr. Gerardo Sánchez y los estudiantes Ariana Lira y Jonatan Romero, identifican, miden y anotan los datos de uno de los individuos capturados.

Figura 5.- Individuo de *Molossus sinaloae*, capturado durante la sesión de captura de murciélagos.

Figura 6.- Liberación de individuo de *M. sinaloae* en una tirolesa.

Figura 7. Grabación de murciélagos con el equipo del proyecto.

Viernes 23 de septiembre

Sesiones teóricas – prácticas matutinas: 9:30 a.m.

Durante el segundo día, se trataron temas para reforzar los conocimientos sobre la obtención de grabaciones de referencia: comportamiento de ecolocación e identificación acústica, tipos de detectores y transformación del sonido, métodos de captura y obtención de grabaciones de referencia.

Además, se presentaron los protocolos de: Fotografía y morfometría (Dr. Ignacio Iñiguez), toma de muestras y preparación de ejemplares (Dr. Antonio Guillén, Figs. 8, 9 y 10) y también se instruyó en el uso de software Batsound y Sonobat para la edición y medición de parámetros cuantitativos básicos de pulsos y secuencias (M. en C. Lorena Orozco y Dr. Ignacio Iñiguez).

Sesiones teórico – prácticas vespertinas: 3:30 pm

Durante la tarde del 23 de septiembre se revisaron las nociones básicas de clasificación de sonidos de ecolocación (Dr. Antonio Guillén/M. en C. Lorena Orozco) y se realizó una práctica de edición y medición de secuencias, para lo cual se proporcionó a los participantes, grabaciones previas de diferentes especies (Dr. Antonio Guillén /M. en C. Lorena Orozco/ Dr. Ignacio Iñiguez).

Segunda práctica de captura e implementación de protocolos: 6:30 pm

Esta noche se visitó otro de los parques urbanos que tienen cuerpos de agua donde también se habían capturado previamente especies de las familias Molossidae y Vespertilionidae. En esta sesión se capturaron individuos de *Tadarida brasiliensis*, *M. sinaloae* y *Myotis fortidens*; una vez procesados los individuos se practicó la grabación en tirolesa para las tres especies.

Figura 8.- El Dr. Antonio Guillén muestra a los participantes el tipo de material necesario para la toma de muestras de tejido.

Figura 9.- El Dr. Antonio Guillén muestra a los participantes el tipo de material necesario para la toma de muestras de tejido.

Figura 10.- El Dr. Antonio Guillén muestra a los participantes cómo se realiza la toma de muestras de tejido.

Sábado 24 de septiembre

Sesiones teórico – prácticas matutinas: 10:00 am

En la sesión de trabajo matutina se llevó a cabo la planeación, organización y logística para la toma de datos por región, para lo que se dividió a los participantes en regiones y se les asignaron aulas independientes para su trabajo. Los colaboradores de cada región con su coordinador llegaron a un consenso sobre el uso del equipo, así como el calendario de trabajo para los siguientes meses.

Posteriormente, se reunieron los participantes en el auditorio para exponer la forma de "Flujo de datos", y presentarles la plataforma que estará en funcionamiento para el proyecto.

Sesiones teórico – prácticas vespertinas: 3:30 pm

Durante la sesión vespertina se platicó sobre las aplicaciones de la información generada, así como el uso y propiedad de datos, posteriormente se abrió una sesión de dudas, comentarios y conclusiones. Algunos temas, como la preparación de especímenes para museo no se abordaron, ya que todos los participantes tenían experiencia previa, o serán capacitados debidamente por sus coordinadores regionales. Finalmente se tomaron fotografías con todos los asistentes al taller (Fig. 11).

Figura 11.- Fotografía de los asistentes al Taller Regional Centro

Proyecto ME004 "Compilación de fonoteca de referencia de los murciélagos insectívoros de México: fase l" TALLER REGIONAL CENTRO ASISTENCIA

Extend to send tree			ASISTENCIA			
Nombre	Procedencia	Región	Tipo de Participación (colaborador, estudiante, etc.)	Jueves 22	Viernes 23	Sábado 24
Jose Astorio Guperdo	DAEM	8	Colaborador	(
Danjela Michel Carren Ochoc	CAEM	8	Estudiante	(
Ana Cristal Lova Nunce	CIBYC	8	Establiante	1		
Maria Isabel Ariza Reynoso	VAEM	8	Estudiante			
Perla Zavala Ranos	UAEM	8	Estudiante			
Fabricio Varela Bordo	VAEM	8	Estudiente Appo icinio			
Ariana Hernandez Liva	VAEM	8	Estudiante			
Luis Gerardo Avila Torresagarba	UAEMOR	8	Colubercoler	-		
Jage Angla Berdan	UATX	8	colaborador			
onzeilez Zarinana Blanco Nahvidad		8	Estadionie	0		
Partha Pilar Ibarra Lipez	UDG	occidente	Calaborador			
lejaudro Soto Castruita	UATX	orlente	Coldborder	-		
Indrea Cruz Vargas	ENCB	centro Norte	Estudiante			
Ison Marvel Pech Corches	JJ	Derente	Calobara das			
atrilded Therest Herenicke Kalentritus	VAM-lema	Centro	Eshdiale	ž		
Dan Crankling Chires Tovas	Usil-Leman	ar	Claborator	-		
Fensedo J. Lantiel Reyes	ENCB	Coold.	10040			
Alejandro Rojo Cruz	Ude G	Occident	· Colaboradu			
Luis I. INIGUEZ	UDG	occ	coond. REG			
Vonaton A. homero Navarro	UDG	OCIDEN	Ticolaborador			
MARIA BLAZQUEZ OLACIREGUI	UPM	也是	Estudiante			

Proyecto ME004 "Compilación de fonoteca de referencia de los murciélagos insectívoros de México: fase l' TALLER REGIONAL CENTRO ASISTENCIA

			HOIOI LI VOIA			
Nombre	Procedencia	Región	Tipo de Participación (colaborador, estudiante, etc.)	Jueves 22	Viernes 23	Sábado 24
Day Level South Systa	UDG	occ	calaboraber.			
AUTOMIO GUILLEM SERVEM	- INEGL	OR	11			
Arell Bizo Agilar	UAEM	cs	Colaborador			
Torena Oroza lugo	UAEM-CIBYC	CS	Coordinator regional			
Maria Concepción Gurusquielo House	CIByC	cs	Apogo tacnico.			
Hilda del R. Hemandez Vila	CIBYC		Apoyo tourico			
Barbara Massiel Campos A.	FOB	LS	Apoyo tecnico			
Orthon Ricardo Vargas Cardoso	DCN	00	Entudionte			
David Valenzudeh.	C1340	CS	Townsty/colab			
Ganzine La verara Stanco Nati vida et	THEER	60%	Colocusale			
Matericland Thurst Henance Yoshitation	VAM-Lema	CS	Estuliante +	4		
Romeo A-Saldana V.	HES-UNAM	co	Colaborador			
Ma Concernión ligrez Téllez	Bologia-BOA	CO	Colaborador			
Gerudo Sonellas	H3AU	CS	Colaborach			

ANEXO 7

PROTOCOLO GENERAL DE TRABAJO DE CAMPO V8.0

Compilación de fonoteca de referencia de murciélagos insectívoros de México: Fase I. (SONOZOTZ-AMMAC-CONABIO ME004)

Miguel Ángel Briones Salas (Coordinador General)

María Cristina Mac Swiney González, Verónica Zamora Gutiérrez (Coordinadoras Técnicas)

Rafael Ávila Flores, Patricia Cortés Calva, Jesús Carlo Cuevas González, Melina Del Real Monroy, Julián Alberto Equihua Benítez, Margarita García Luis, Ángel García Rojas, José Antonio Guerrero Enríquez, Antonio Guillén Servent, Luis Ignacio Íñiguez Dávalos, Celia López González, Fernando Javier Montiel Reyes, Carmen Lorena Orozco Lugo, Jorge Ortega Reyes, Juan Manuel Pech Canché, Everardo Gustavo Robredo Esquivelzeta, Celia I. Selém Salas, Adriana Valera Bermejo (Colaboradores)

Estación de La Mancha, Veracruz

V.3.0 creada el 11 de junio de 2016

V.4.0 creada el 7 de septiembre de 2016

V.5.0 creada el 13 de septiembre de 2016

V.6.0 creada el 26 de octubre de 2016

V.7.0 creada el 3 de febrero de 2017

V.8.0 creada el 19 de febrero de 2018

El presente documento constituye el protocolo de trabajo de campo del proyecto ME004. Es resultado del taller organizativo del proyecto, llevado a cabo del 6 al 11 de junio de 2016 en la Estación Biológica La Mancha, Veracruz y modificado como resultado de la experiencia en los talleres regionales. El protocolo de muestreo de ejemplares y grabaciones sigue las especificaciones de los términos de referencia del Anexo 3 del Convenio CONABIO-AMMAC, establecidos para la elaboración de la Fonoteca, y refleja la estructura de toma de datos necesaria para la plataforma a la cual se integrarán los datos.

Objetivos del Proyecto pertinentes a este protocolo:

- 1) Capturar e identificar murciélagos insectívoros.
- 2) Obtener grabaciones de ultrasonidos de los individuos capturados.
- 3) Obtener fotografías de los mismos para la fototeca de CONABIO.
- 4) Preservar muestras selectas de tejido de los animales capturados.
- 5) Preservar ejemplares de referencia selectos en forma de "piel y cráneo" en colecciones mastozoológicas autorizadas.
- 6) Recolectar información geográfica para la elaboración del mapa digital para CONABIO.
- 7) Crear archivos digitales de llamados de ecolocalización y datos asociados, organizados y etiquetados para permitir su ingreso a la plataforma que constituirá la fonoteca y para su posterior uso con fines de investigación.

Objetivos adicionales del grupo de trabajo:

- 8) Recopilar datos ambientales (temperatura y humedad relativa) de las localidades de colecta.
- 9) Recopilar, dentro de lo posible, datos sobre morfología alar.
- 10) Monitorear de manera estandarizada la actividad de forrajeo de murciélagos insectívoros en localidades selectas.

ORGANIZACIÓN DE ESTE DOCUMENTO

IV. Formatos de campo e instructivos

I. Colecta de información

El presente protocolo está organizado en cinco apartados, que se desglosan a continuación (en paréntesis se indica el objetivo para el que fueron creados).

I.1 Datos geográficos Sitios de muestreo y sus características (6) I.2 Murciélagos Captura (1) Fotografías (3, 9) Grabación (2) Tejidos (4) Ejemplares completos (5) I.3 Datos ambientales Temperatura y Humedad relativa (8) II. Procesamiento de la información en campo (7) II.1 Consideraciones generales II.2 Identificadores base II.3 Formatos de campo II.4 Fotografías **II.5 Grabaciones** II.6 Tejidos II.7 Ejemplares completos II.8 Datos ambientales III. Organización de datos para entrega a coordinadores (7)

- IV.1 Formato 1-Descripción de la localidad
- IV.2 Formato 2-Datos de ejemplares
- IV.3 Formato 3-Datos de grabación
- IV.4 Formato 4-Catálogo de preparación

V. Anexos

- V.1 Anexo 1-Regiones y sitios de colecta
- V.2 Anexo 2-Padrón de Colectores
- V.3 Anexo 3-Especies y gremios tróficos
- V.4 Anexo 4-Lista de material y equipo

I. COLECTA DE INFORMACIÓN

I.1 DATOS GEOGRÁFICOS

Sitios de muestreo y sus características

El territorio mexicano se dividió en 8 **regiones**, cada una a cargo de uno o dos coordinadores regionales. En cada región se seleccionaron al menos 12 **sitios**, que representan diferentes áreas de muestreo asociadas a ecosistemas característicos de la región (**Anexo 1**). Se muestreó una o más **localidades** dentro de cada sitio, a criterio de los colaboradores y coordinadores de cada región. Cada localidad, que corresponde a un punto específico en el espacio (por ejemplo, refugio o sitio de colocación de redes), se describió en el *Formato 1-Descripción de la localidad* como se indica en las instrucciones asociadas al formato. Se llenó un formato por día de trabajo. En la sección hábitat, se agrega cualquier información que se considere relevante sobre las condiciones ambientales y ecológicas de la localidad de trabajo.

Si se desea agregar puntos de muestreo adicionales a los definidos en el **Anexo 1**, el colaborador a cargo deberá informar al coordinador regional sobre esta decisión y enviará las coordenadas del nuevo punto, y éste, a su vez, notificará al técnico del proyecto. Al nuevo punto se le asignará el siguiente número consecutivo para la región correspondiente.

I.2 MURCIÉLAGOS

Captura

Colectores: Por acuerdo de los coordinadores, sólo podrán colectar muestras para este proyecto personas que hayan participado en alguno de los talleres regionales. Es responsabilidad de los coordinadores regionales verificar que los nuevos participantes estén capacitados, que cuenten con el material y equipo necesarios para trabajar, así como con los permisos de colecta correspondientes. Asimismo, deberán informar a los coordinadores técnicos el nombre y adscripción de cualquier colector adicional para darlo de alta en el padrón de colectores de la plataforma del proyecto (Anexo 2). Los colectores deberán contar en todo momento con el permiso de los propietarios de los terrenos o inmuebles donde lleven a cabo sus colectas.

Captura de murciélagos: Los murciélagos se capturarán en refugios, dentro de cualquier ecosistema utilizando redes de niebla, redes de golpe, trampas de arpa, o con otras técnicas a discreción de los colectores. Durante el procesamiento se deberá minimizar la manipulación y estrés de los ejemplares capturados. Éstos se colocarán en sacos de manta (un individuo por saco). Cada bolsa será etiquetada con una cinta adhesiva (p.ej. masking-tape) con la hora, fecha de colecta e identificación taxonómica hasta donde sea posible. Al término de la sesión de muestreo, o de manera simultánea, los ejemplares se llevarán al campamento (laboratorio, estación, mesa de trabajo etc.), para el registro de datos en el *Formato 2-Datos de ejemplares* siguiendo las instrucciones de llenado asociadas. Se utilizará una hoja diferente para cada día de trabajo. Si se requiere más de una hoja para un mismo día, deberá verificarse que las hojas extras contengan los mismos datos en el encabezado.

Procesamiento de murciélagos: Consta de cuatro pasos:

- 1) Fotografía del ejemplar.
- 2) Toma de muestras de tejido.
- 3) Grabación del ejemplar.
- 4) Preparación del ejemplar.

No todos los pasos se aplicarán a todos los ejemplares; sin embargo, cualquier combinación de estos cuatro procesos que se decida llevar a cabo (ver términos de referencia del proyecto), deberá llevarse a cabo en el orden aquí establecido.

IMPORTANTE: En el momento de la captura, deberá colocarse en la bolsa del ejemplar una cinta adhesiva con el identificador del ejemplar creado como se indica en las instrucciones del *Formato 2.* Se recomienda agregar también la fecha de captura. Este pedazo de cinta seguirá al murciélago durante todo su procesamiento como se describe más abajo, para asegurar que el identificador único sea el correcto para toda la información del ejemplar. Al término del procesamiento se recomienda destruir la cinta o asociarla al ejemplar preparado cuando sea el caso.

Fotografías

Imágenes para el proyecto: A cada individuo capturado se le tomará una foto de perfil, de ¾ o de frente con suficiente acercamiento para poder reconocer rasgos que permitan identificarlo. Esta fotografía será la que se entregue a CONABIO. Se recomienda tomar varias fotografías para permitir seleccionar la mejor. Estas fotografías deberán seguir los lineamientos de CONABIO como se explica en Lineamientos_Fotografías_ilustraciones_digitales_feb2013.pdf', documento que se encuentra en su página web (www.conabio.gob.mx). Las fotografías se entregarán sin editar.

Todas deberán tener al menos:

- Resolución mínima de 300 dpi.
- Tamaño mínimo de 25 cm o 2400 pixeles de ancho.
- Formato JPG, TIFF o de preferencia RAW.
- Buena nitidez, color e iluminación (ni obscura, ni quemada por exceso de luz).
- De preferencia fondo oscuro.

Se necesitan mínimo dos personas para obtener fotos adecuadas, una encargada de manipular y preparar al murciélago que se va a fotografiar y otra encargada de tomar las fotos. Las fotos deberán ser tanto funcionales (para visualizar características claves de las especies)

como estéticas en la medida de lo posible. En caso de sujetar al murciélago con la mano, no olvidar usar guantes.

Se recomienda que la primera foto de cada ejemplar sea la de la cinta con el identificador para evitar mezclar individuos. Se sugiere también que una sola persona/cámara tome todas las fotografías para evitar errores.

Imágenes adicionales: De manera opcional se podrán tomar las siguientes fotografías que apoyen a la identificación, por ejemplo:

- Vista dorsal cuerpo completo.
- Vista ventral cuerpo completo.
- Uropatagio dorsal y ventral.
- Caracteres de importancia para la identificación: fleco de pelos, trago, etc.

Fotografías para análisis de morfología alar: Se deberá tomar una fotografía adicional del ala derecha del ejemplar sobre una hoja de papel milimétrico (se recomienda forrar la hoja con una mica opaca, para evitar el reflejo por la luz del flash en la fotografía). Se colocará la cinta con el identificador sobre la hoja milimétrica como referencia.

Para generar esta imagen se posiciona el murciélago sobre el papel milimétrico (Fig. 1). Se tomará el ala derecha en todos los ejemplares. Una vez posicionado, se debe asegurar que el ala esté completamente estirada, en una posición natural que no lastime al murciélago. La punta del ala también debe que estar completamente estirada. Si el murciélago está muy inquieto, otra persona puede ayudar a mantener la pata del murciélago hacia abajo o sentada sobre el papel para que el plagiopatagio quede adecuadamente estirado. Esa misma persona puede asegurar uno o dos puntos del ala del murciélago para que quede correctamente asentada sobre el papel. Se debe tener cuidado de no cubrir ninguna de las articulaciones del ala. Deberán evitarse sombras en la imagen.

Figura 1. Correcto acomodo del murciélago para la toma de fotografía alar.

Grabación

Consideraciones generales: Los ejemplares serán grabados y liberados la misma noche en la que se capturen y lo más pronto posible después de su procesamiento para reducir al mínimo su fatiga y estrés y así obtener la mejor grabación posible en vuelo. Los murciélagos podrán ser liberados la tarde siguiente sólo en caso de que no pudieran ser grabados en la misma noche de captura (por ejemplo, cuando el animal fue capturado cerca del amanecer), siempre y cuando se encuentren en buen estado físico. Una vez que éstos hayan sido grabados y ÚNICAMENTE después de asegurarse que todos los datos necesarios hayan sido tomados, deberán liberarse *in situ*. Se necesitan mínimo dos personas para grabar, una encargada de manipular y preparar al murciélago que se va a grabar y otra encargada del equipo de grabación.

Para el presente proyecto se grabarán y entregarán *sonidos en fase de búsqueda*, que pueden ser obtenidos cuando los individuos están navegando en el espacio o buscando alimento al vuelo. Se entregará al menos un pase con cinco pulsos, salvo en aquellas especies raras de las que no se cuente con información suficiente, en cuyo caso pueden entregarse menos de cinco pulsos de un pase, si éstos son de buena calidad. Vigilar que las grabaciones no contengan mucho ruido y que no se encuentren saturadas (es decir, que la amplitud de las ondas de sonido no alcance el 100%). En esta etapa sólo se aceptarán grabaciones de espectro completo (*full spectrum*), dando preferencia a las de tiempo real 1x (*real time*) grabadas con el equipo adquirido *ex profeso* para este proyecto, seguidas por tiempo real y expansión de tiempo (10x) (*time expansion*) grabadas con otros equipos.

Antes de utilizar el equipo: Asegurar que la computadora no pueda conectarse a internet en ningún momento, ya que esto le reducirá capacidad de procesamiento y puede llegar a causar conflictos con el software. Desconectar las actualizaciones automáticas y cualquier otro proceso automático que reduzca capacidad de procesamiento. Instalar un antivirus que no necesite conectarse a internet para correr, se recomienda Avira Antivir. Si se va a actualizar, hacerlo cuando no se esté usando el equipo y deshabilitar la conexión a internet al finalizar. Asegurarse de que cualquier memoria o disco que se conecte a la computadora esté libre de virus.

Instalación del Software: Para operar el detector es necesario descargar el software de operación que se encuentra en la página de Avisoft, menú "Download", archivo Avisoft-recorder USGH 4.2.24, 02 JUNE 2016 (http://www.avisoft.com/downloads.htm).

Desde la misma página, descargar el manual *Avisoft-RECORDER User's Guide for versión* 4.2. Instalar el software siguiendo las instrucciones en pantalla. Asegúrese que el detector no esté conectado a la computadora. La computadora personal asignada al proyecto ya tiene instalado el software Avisoft-RECORDER, por lo que no será necesario instalarlo de nuevo.

Ensamblado del detector: El equipo de detección consta de tres partes: micrófono, cable USB y detector, los cuales se ensamblan como se muestra en la Fig. 2.

Figura 2. Ensamblaje de detector y micrófono.

El detector cuenta con un cable extensión XLR-5 que se sugiere se coloque entre el micrófono y la Unidad UltraSoundGate. El usar esta extensión reduce el nivel de ruido que puede ocurrir a veces cuando el micrófono es conectado directamente a la unidad base UltraSoundGate.

El detector tiene también adicionalmente una membrana de condensación que se puede utilizar para grabar a las especies con llamados de baja intensidad ya que intensifica la señal (p. ej. *Natalus mexicanus*).

Activación del detector: Una vez instalado el software, conectar el detector a un puerto USB de la computadora utilizando el cable que el detector incluye para el efecto. La conexión a la computadora funciona como llave para que se pueda abrir el programa. No intente abrirlo sin tener el detector adecuadamente conectado. Una luz verde en la base del detector empezará a parpadear para indicar que está conectado y listo para operar. Asegúrese de que el detector esté conectado adecuadamente al puerto USB; de no ser así, en la pantalla aparecerá un mensaje de error. Si está bien conectado se escucha un "click".

Programación de settings de grabación: El detector se programa únicamente a través del software Avisoft RECORDER. Abrir el programa. Este sistema puede grabar *ultrasonidos* (canal 1) y *mensajes de voz* (Canal 2).

Para poder grabar mensajes de voz que apoyarán al colector en la tarea de detección y grabación, se debe seguir la siguiente ruta: en el menú "Options" seleccionar la opción 'Enable sound cards' para habilitar la tarjeta de sonido de la computadora.

En el menú 'Options' seleccionar la opción 'Configuration' para configurar los dos canales de grabación (Fig. 3):

CANAL 1

Seleccionar 'Ultrasoundgate 116H'.

Device: Este menú despliega los dispositivos que están conectados. Seleccionar '2 Avisoft Ultrasoundgate 116H 3.1 #1'.

Name: Verificar que diga ch1 (Canal 1).

Channel: seleccionar 1.

Verificar que las opciones Active e Increment estén activadas.

Current file number: Indica el número de archivo de grabación siguiente. Se puede cambiar desde el menú de *Filenames*.

Trigger: Indica de qué manera se va a activar y desactivar el proceso de grabación. Se debe seleccionar la opción de USG TRG button.

Pre-trigger: Indica el tiempo de grabación anterior a la activación de la grabación. Este valor deberá ser 1.

Hold tm: Indica el tiempo de grabación posterior a la terminación de la grabación. Este valor deberá ser 1.

Activar la opción *Toggle*. Esto significa que cada vez que se apriete el botón trigger en el detector, cambiará el estado de grabación (on/off).

Base directory: No se debe cambiar el directorio automático porque se generan errores.

Device: Seleccionar '2 Avisoft Ultrasoundgate 116H 3.1 #1'.

Sampling rate: Seleccionar 300000 Hz.

Format: 16 bit.

Seleccionar la opción *High-pass filter* y especificar en la ventana correspondiente el número 4.

Esto permitirá reducir el ruido de fondo con frecuencia igual o menor a 4 kHz.

Display: Seleccionar Spectrogram, que permitirá observar los pulsos en el proceso de grabación.

Range: Especificar los valores de 0 a 250 kHz.

Overlap: Especificar 50%

Enlarge y axis by: 2

Maximum file size: Máximo tiempo de duración en un archivo. Se especifica en 0.25 min (15 segundos).

Desactivar la opción Enable USG TRG button as alternative trigger source.

Desactivar la opción Save the active channels of each device into a single multichannel file (no separated triggering).

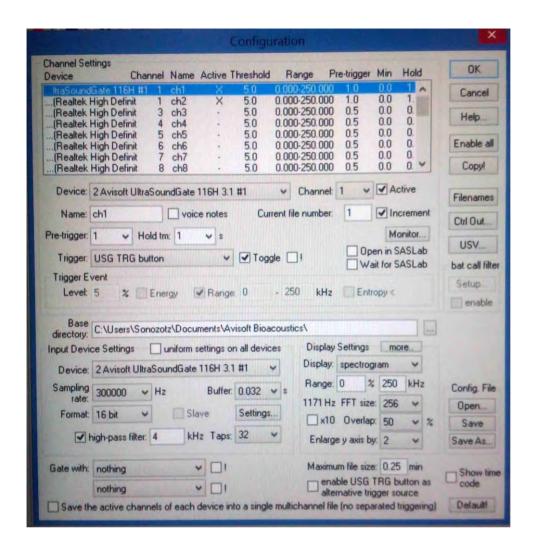


Figura 3. Configuración de Canal 1.

CANAL 2

En este canal se grabarán los comentarios de voz asociados a cada grabación (Figura 4):

Device: Este menú despliega los dispositivos que están conectados. Aquí se seleccionará la opción 1 Micrófono (Realtek High Definit 6.3 o similar).

Activar la ventana Voice notes.

Channel: 1 (no se está grabando en Stereo, por lo que se especifica Canal 1). Activar la opción Active.

Trigger: Indica de qué manera se va a activar y desactivar el proceso de grabación, seleccionar la opción "USG TRG button".

Activar la opción *Toggle*. Esto significa que cada vez que se apriete el botón trigger en el detector, cambiará el estado de grabación (on/off).

Pre-trigger: Indica el tiempo de grabación anterior a la activación de la grabación. Especificar 1.

Hold tm: Indica el tiempo de grabación posterior a la terminación de la grabación. Especificar 1.

Base directory: No se debe cambiar el directorio automático porque se generan errores.

Device: Este menú despliega los dispositivos que están conectados. Aquí se seleccionará la opción 1 Micrófono (Realtek High Definit 6.3 o similar).

Sampling rate: 11025 Hz.

Format: 8 bit.

Number of buffers: 32

Desactivar la opción high-pass filter.

Display Settings: activar el menú "more" y activar la opción "x10"

Display: seleccionar "*Spectrogram*", lo que permitirá observar los pulsos en el proceso de grabación.

Range: especificar 0 a 250 kHz.

Maximum file size: máximo tiempo de duración en un archivo. Especificar 0.25 min (15 segundos).

Desactivar la opción Enable USG TRG button as alternative trigger source.

Desactivar la opción Save the active channels of each device into a single multichannel file (no separated triggering).

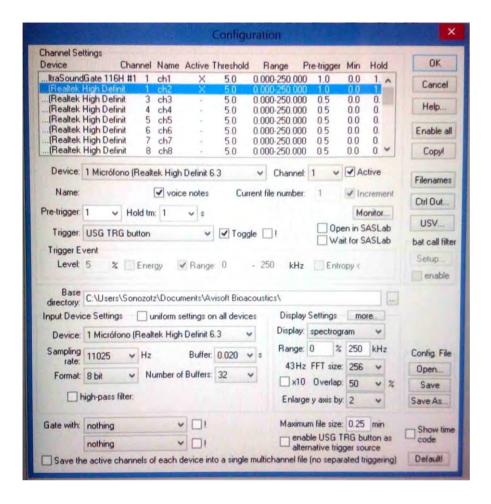


Figura 4. Configuración del Canal 2.

IMPORTANTE:

- 1.- Verificar que la opción *Turn on the polarization voltage* se encuentre activa. Esta opción se encuentra en la cajita de settings de *Advanced USGH Device Settings* (Fig. 5).
- 2.- Si por alguna razón no se puede configurar el canal 2, se puede utilizar cualquier otro canal, manejando la misma configuración señalada para la configuración de las notas de voz.
- 3.- Verificar que el micrófono de la computadora esté al máximo de volumen.
- 4.- Verificar que el detector tenga la máxima ganancia (Gain) de sensibilidad.

- 5.- GUARDAR LA CONFIGURACIÓN tanto del Canal 1 como del Canal 2 en la misma carpeta donde se almacenan las grabaciones. Esto se hace dando click en *Save as* y asignándole un nombre al archivo de configuración.
- 6.- En algunas circunstancias se presentan errores en el archivo de la configuración. Para resolverlos es necesario borrar todos los archivos de configuración; es por ello que se recomienda guardar la configuración antes especificada en una carpeta alterna a la del programa para recurrir al archivo generado de manera sencilla, evitando configurar los parámetros en cada ocasión. En la página de Avisoft se presenta la siguiente leyenda para resolver este problema:

"Under certain circumstances it might happen that the configuration files (AVISOFT.CFG, RECORDER.INI, DEFAULT.INI, etc.) have been damaged, which can prevent the proper operation of the software, even after re-installation. This issue can be fixed by executing the SASLab command File/Configuration/Reset or the RECORDER command Options/Configuration management/Reset. Alternatively, the entire folder Documents/Avisoft Bioacoustics/Configurations could be deleted."

Grabación

La persona encargada de manejar al murciélago deberá tener consigo:

- Guantes.
- Lámpara de cabeza con suficiente batería.

Antes de iniciar cada sesión de grabación, la persona encargada de la grabación deberá tener consigo:

- Detector.
- Computadora.
- Cableado correspondiente.
- Audífonos.

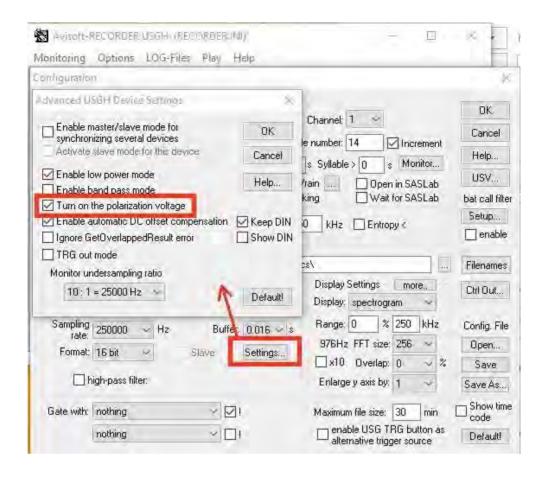


Figura 5. Configuración avanzada del detector

Y habrá verificado que:

- La batería de la computadora tenga suficiente carga para llevar a cabo el trabajo.
- El software y la computadora funcionen adecuadamente.
- Para conseguir menos amplificación del ruido ambiental y electrónico, bajar la ganancia rotando la perilla correspondiente del detector en sentido contrario a las manecillas de reloj. En murciélagos que emiten vocalizaciones de alta intensidad se recomienda bajar la ganancia, lo opuesto ocurre con vocalizaciones de baja intensidad.
- El detector esté conectado a la computadora.
- Los audífonos estén conectados a la computadora.

Antes de liberar el murciélago, seleccionar en el menú Options, la opción File naming.

En el menú desplegado, seleccionar las siguientes especificaciones (Fig. 6):

Filename prefix: colocar el ID del ejemplar (ver sección de etiquetado). Este número se deberá

cambiar para cada individuo.

Track number: Desactivar esta casilla. Este número consecutivo es el que aparece en current file

number en el menú principal y en la pantalla del avisoft.

Date: Activar la casilla, verificar que la fecha sea la correcta.

Time: Activar la casilla, verificar que la hora sea la correcta.

Compact format: Desactivar la casilla.

Cerrar el menú.

Guardar la configuración con Save y se guarda la configuración como respaldo usando Save as.

Dar OK para salir y empezar la grabación.

Para asegurarse que la configuración predeterminada queda guardada, en el menú

Options y Configuration management desplegar el submenú Save mode on exit y verificar que la opción Save current configuration automatically se encuentre seleccionada.

Con esta configuración, las grabaciones del canal 1 (murciélagos) se nombran automáticamente con el nombre de archivo asignado en *Filename prefix* más la fecha, la hora de grabación y un número consecutivo. Por ejemplo, la grabación de los mensajes de voz del ejemplar 080116-0001 tendrá el nombre **080116-00012016-06-10 22-45-59.wav.**

Notas de voz: Se pueden hacer notas de voz indicando la especie que se grabará, el ID del ejemplar, la fecha y el equipo con el que se está grabando. La grabación inicia apretando el botón de *Trigger* del detector. Debe tenerse en cuenta que con las especificaciones establecidas anteriormente cualquier comentario o nota estará siendo grabada. Se recomienda procurar un ambiente con el menor ruido audible posible para obtener notas de voz de calidad. Éstas se nombran igual que las grabaciones de ecolocalización. Por ejemplo, la grabación de los mensajes de voz del ejemplar 080116-0001, tendrá el nombre **080116-00012016-06-10 22-45**-

59.wav

Los archivos de voz no se corresponden uno a uno con las grabaciones de ecolocalización, puede haber más de un archivo de voz para cada grabación. El programa almacena la información de cada canal en carpetas separadas llamadas ch1 y ch2, respectivamente.

El detector genera automáticamente un archivo txt para cada canal que nombra automáticamente como 'ch1.LOG' y 'ch2.LOG'. Estos archivos contienen información detallada sobre todos los eventos de grabación, y se genera uno nuevo cada vez que se abre el software.

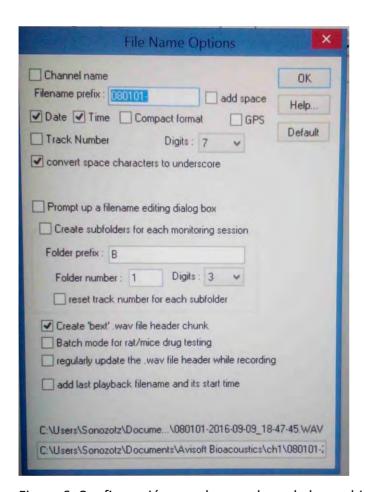


Figura 6. Configuración para los nombres de los archivos.

Para escuchar en el espectro audible las grabaciones en campo

Seleccionar en el menú Configuration la opción Monitor.

Seleccionar la opción *broad-band HF monitoring* para escuchar la señal expandida (10x), o bien, seleccionar *Selective heterodyne HF monitoring* para escuchar en modo heterodino. Se requiere además seleccionar el ancho de banda (frecuencia de detección más/menos 5 KHz). Si se va a escuchar en el espectro audible, es indispensable el uso de audífonos para evitar contaminación de la grabación por sonido de las bocinas de la computadora. Se recomienda que se aumente la sensibilidad de dB para que los llamados puedan escucharse adecuadamente.

Mantenimiento y cuidado del equipo

Las personas encargadas del equipo de grabación serán responsables por la integridad de los equipos. Las computadoras y los detectores no deberán ser expuestos a golpes, agua o sol directo. El equipo debe desensamblarse al término de su uso y se recomienda guardarlo en el estuche correspondiente con un sobre de silica gel para absorber la humedad. Se debe evitar tocar la membrana del micrófono o introducirle cualquier tipo de objetos.

Métodos de grabación

Consideraciones generales

- No liberar murciélagos cerca de cuerpos de agua, troncos gruesos, zonas pavimentadas,
 paredes u otras estructuras planas que puedan causar ecos.
- Colocar el detector en un ángulo de 45° con el micrófono hacia arriba. Nunca apuntar el micrófono al suelo ni a ninguna zona que produzca ecos.
- La persona que libera el murciélago tratará de dirigirlo hacia la persona que graba.
- Se permitirá al murciélago volar libremente sin forzarlo o aventarlo.
- Asegurarse que el individuo se encuentre activo (incluso inquieto), con una temperatura adecuada y con el menor estrés posible (algunas especies, especialmente los vespertiliónidos, entran en torpor con facilidad).

- Reducir la manipulación del murciélago al mínimo.
- Preferentemente grabar al murciélago en un ambiente similar a su hábitat típico de forrajeo (ver Anexo 3- Especies y gremios tróficos).
- Evitar grabar a los murciélagos en momentos en que otros individuos estén volando, ya sea de otras especies o conespecíficos, para evitar contaminación de la grabación.
- Mantener a los individuos hidratados, evitar exponerlos al sol directo o temperaturas elevadas. En caso de trabajar en ambientes fríos, procurar mantenerlos a temperatura corporal. En climas secos puede ser necesario humedecer las membranas alares para evitar que se dañen.
- Si se localizan colonias y/o sitios de percha se pueden grabar individuos al salir del refugio pero a una distancia razonablemente grande para evitar saturación por conespecíficos y rebotes de ecos. En este caso, asegurarse primero de que la colonia es monoespecífica.
- Se recomienda tener cuidado con la presencia de posibles depredadores al momento de la liberación.
- No grabar a más de 10 m de distancia del murciélago ya que el micrófono de este proyecto tiene baja sensibilidad. Lo recomendable es grabar a unos 5 m aproximadamente y un poco más para aquellas especies con llamados de alta intensidad.

Métodos de liberación

Los métodos pueden variar dependiendo de la especie que se trate. El que se describe en la sección anterior corresponde a ejemplares que pueden grabarse al ser liberados. Se describen los métodos más comunes a continuación:

Liberación en mano (hand-release): Consiste en grabar al murciélago al momento de ser liberado de la mano de la persona (a una altura razonable, cuando menos a la altura del pecho).

Tirolesa (zip-line): Este método consiste en colocar dos postes con una altura entre 2.5-3 m unidos con una cuerda de nylon (hilo de pescar) con una longitud de 5 m aproximadamente. En un extremo de esta cuerda se coloca un anillo de plástico (de preferencia) al cual se le amarra un hilo elástico de 3 a 5 m; en el otro extremo se ata al murciélago. Se sugiere atar al murciélago del cuello, de manera que le permita un vuelo libre, pero que evite liberarse o lastimarse.

Jaula de vuelo: Consiste en liberar al murciélago dentro de un encierro suficientemente grande, que le permita al individuo un vuelo lo más natural posible. Se sugieren encierros hechos de malla plástica con dimensiones aproximadas de 8 m largo x 4 m ancho x 3 m de alto.

Liberación a gran altura: Una persona puede colocarse en una posición elevada respecto al nivel del suelo (por ejemplo, en un edificio) y liberar al murciélago en mano o con ayuda de una tirolesa. Una variante de este método es colocar al murciélago sobre una superficie elevada (edificio, pared rocosa o árbol alto y poco ramificado) y permitir que él mismo escale para tomar altura y volar.

Diferentes métodos son mejores para ciertos grupos de murciélagos. Existen ciertas recomendaciones de grabación para especies o grupos específicos (Cuadro 1).

Monitoreo pasivo

Se sugiere que en cada localidad se grabe durante 15 minutos para tener un registro de la comunidad de murciélagos presente. Para esto se deberá activar el detector para que comience a grabar 15 minutos después de la puesta del sol según indique el GPS en cada localidad. Se grabará continuamente durante 5 minutos. Cincuenta y cinco minutos después se grabarán otros 5 minutos, repitiendo una vez más para completar 3 periodos de 5 minutos grabados con intervalos de 1 hora entre ellos. Este monitoreo se deberá nombrar en el *Filename prefix*' con el ID de la localidad seguido de '-', posteriormente la palabra 'Monitoreo'. El programa etiquetara los archivos como 080116-Monitoreo2016-06-10 22-45-59.

Cuadro 1. Modos de grabación recomendables por grupo de murciélagos

Especie o grupo	Modo de grabación	Altura de	Distancia al	Ambiente de
		liberación	detector	liberación
Pteronotus parnellii	Especie que se	N/A	0.50 m	Estacionario
	recomienda grabar			(dentro de la
	dentro de la bolsa,			bolsa)
	en mano			
Natalus mexicanus/	Tirolesa o jaula de	N/A	menos de 1 m	Cerrado
filostómidos*	vuelo		(ecolocalizan a	
			baja intensidad)	
Molósidos y	Tirolesa o liberación	Mayor a 10 m	Mayor a 10 m	Abierto
embalonúridos	a gran altura.			
(Diclidurus albus),				
Noctilio				
Algunas especies de	Tirolesa o liberación	2 m	5 m	Abierto
vespertiliónidos	en mano			
(Lasiurus, Myotis),				
Thyroptera tricolor				
Embalonúridos	Liberación en mano	2 m	5 m	Borde
(Saccopteryx,	y tirolesa			
Balantiopteryx), Myotis				
yumanensis, M. keaysi,				
y algunas otras especies				
de vespertiliónidos				
(Eptesicus, Rhogeessa)				
Diclidurus albus,	Vuelo libre con	N/A	N/A	Abierto
Noctilio, Eumops	iluminación. Estas			

underwoodi, Eumops especies son
 perotis, Mormoopidos, reconocibles con el
 embalonúridos. uso de lámparas y
 su vuelo puede ser
 seguido y grabado
 sin la necesidad de
 capturarlos.

Tejidos

Se deberán tomar muestras de tejido mínimamente de todos aquellos individuos capturados de los que se tenga duda de su identificación (Certeza ID<100% según se haya especificado en la columna correspondiente del *Formato 2*). Se dará prioridad de análisis a las muestras de tejido que permitan identificar a todos los individuos con una certeza del 100%.

Tejido alar (ejemplares para liberar).

En una superficie plana previamente desinfectada con agua oxigenada, etanol o alcohol en gel, se extenderá la membrana alar del ejemplar con la parte dorsal hacia arriba. Se tomará una muestra de la parte más distal de cada ala utilizando un sacabocado (biopsy punch) o pinzas y tijeras finas. Las muestras deberán ser mayores de 3 mm de diámetro o del diámetro de la aguja de biopsia; se evitará tomarlas cerca de vasos grandes o del borde de las alas para evitar desgarrarlas.

Después de cada corte se deberán limpiar las tijeras y/o sacabocado con alcohol para evitar contaminación. La aguja de biopsia se puede esterilizar con ayuda de la flama directa de un encendedor con la finalidad de eliminar todo residuo entre muestras, o bien se puede limpiar con toallitas desechables con cloro. Adicionalmente a fin de evitar infecciones se puede

^{*} Especies con llamados de baja intensidad donde se recomienda usar la membrana de condensación del detector

aplicar violeta de genciana, agua oxigenada, topazone o algún otro antiséptico al sitio donde se tomó la muestra.

El tejido obtenido se guardará en tubos de 1.8 ml con tapa de rosca y/o empaque plástico o en tubos Eppendorf de 1.5 ml conteniendo etanol al 96% o etanol absoluto grado molecular (en un volumen de ¾ partes del tubo). El tubo será previamente etiquetado con el ID del ejemplar (*Formato 2*), con ayuda de un rotulador indeleble al agua y alcohol o con lápiz, la etiqueta irá en la parte superior de la tapa y en el costado del tubo. Después de obtener la muestra, los tubos se sellarán con Parafilm®. Las muestras se mantendrán a temperatura ambiente, evitando la luz directa. Una vez en laboratorio, se preservarán a una temperatura de entre 4 y -10 °C.

Tejido de órganos internos (ejemplares voucher de colección)

a) Etanol: Una vez sacrificado el ejemplar, se hace una incisión abdomino-torácica para obtener muestras de tejido muscular (pectoral, corazón), hígado, riñón, bazo y páncreas. Este proceso deberá ser inmediato a la muerte del animal para evitar la degradación del material genético. El tamaño del tejido (3x3 mm) no deberá ser mayor a 1/3 del volumen del tubo que lo contendrá (1.8/1.5 ml); en conjunto, etanol y muestra, tendrán un volumen final de ¾ partes del tubo, esto para evitar el derrame del etanol.

El tejido obtenido se guardará en tubos de 1.8 ml con tapa de rosca y/o empaque plástico o en tubos Eppendorf de 1.5 ml conteniendo etanol al 96% o etanol absoluto grado molecular (en un volumen de ¾ partes del tubo). El tubo será previamente etiquetado con el ID del ejemplar (*Formato 2*), con ayuda de un rotulador indeleble al agua y alcohol o con lápiz (la etiqueta irá en la parte superior de la tapa y en el costado del tubo). A las muestras preservadas en alcohol se le agregara una 'A' en la etiqueta para saber que la muestra está contenida en este líquido. Después de obtener la muestra, los tubos se sellarán con papel Parafilm®. Las muestras se mantendrán a temperatura ambiente, evitando la luz directa. Una vez en laboratorio, se preservarán a una temperatura de entre 4 y -10° C.

b) RNA-Later (opcional): Sólo se preservarán muestras de órganos (hígado, riñón, bazo, páncreas) en este fijador (ver archivo 'rna later manual conservacion_2016.pdf' para detalles de preservación). Este proceso requiere de mayor rapidez en comparación con los antes descritos debido a que el ARN debe ser conservado de inmediato para evitar la degradación. En zonas de alta temperatura y elevada humedad relativa el ARN se degrada aun con mayor rapidez. El tamaño de la muestra no deberá ser mayor a una tercera parte del tubo que lo contendrá (1.8/1.5 ml). En conjunto, RNA-Later y muestra tendrán un volumen final de ¾ partes del tubo, esto para evitar el derrame del líquido; se debe asegurar la inmersión total del tejido para una impregnación eficaz en cada uno de los tubos utilizados. Se deberá usar solamente un tubo con tejidos de los diferentes órganos.

El tubo será previamente etiquetado con el ID del ejemplar (*Formato 2*), con ayuda de un rotulador indeleble al agua y alcohol o con lápiz (la etiqueta irá en la parte superior de la tapa y en el costado del tubo). A las muestras preservadas en alcohol se le agregara una 'R' en la etiqueta para saber que la muestra está contenida en este líquido. Después de obtener la muestra, los tubos se sellarán con papel Parafilm®. Con esta técnica se debe cuidar a detalle la temperatura de traslado; se sugiere el uso de un tanque con nitrógeno líquido o hielo seco; en caso de que no se cuente con éstos, se puede utilizar hielo, cambiándolo continuamente (ver archivo 'rna later manual conservacion_2016.pdf' con especificaciones de uso para RNA-Later). Una vez en laboratorio, las muestras se almacenarán a una temperatura constante de -20° C (ultracongelador). Estas muestras se resguardarán en la colección de Tejidos del Centro de Investigaciones Biológicas del Noroeste (CIBNOR).

Envío de muestras: Las muestras se empacarán en sobres de papel manila con forro de poliburbuja para evitar derrames y maltratos en la transportación. En cada sobre se deberá incluir una copia de la relación de las muestras enviadas, así como copia del permiso de colector del proyecto. Se deberán enviar por paquetería exprés (entrega de 24 hrs, DHL, UPS, FEDEX, ESTAFETA, etc.), por favor mencionar al servicio de mensajería que son productos de PCR y que el paquete es de entrega urgente. Las muestras en etanol se reducirán en volumen (cubriendo lo mínimo necesario del tejido). Previo al envío, indicar al encargado de la colección receptora el

arribo del paquete y periodo de tiempo programado de entrega. En todos los casos debe existir un responsable que se haga cargo de recibir el paquete y del adecuado almacenaje de las muestras.

Colecciones Receptoras:

Para muestras en etanol sin ejemplar colectado la colección receptora es:

Colección Regional Durango (Mammalia), CRD. Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Durango, IPN (CIIDIR-Durango), clave
 DGO.MAM.009.11969. Enviar a la Dra. Celia López González (celialg@prodigy.net.mx).
 Dirección: Calle Sigma #119, Fracc. 20 de Noviembre II, Durango Durango., C.P. 34220.
 México.

Para muestras en RNA-later y ejemplares completos (con todas sus muestras de tejido asociadas) la colección receptora es:

Colección de mamíferos, CIB. Centro de Investigaciones Biológicas del Noroeste
 (CIBNOR). Registro de colección científica, clave: BCS.MAM.085.0899. Enviar a la Dra.
 Patricia Cortés Calva (Email: pcortes04@cibnor.mx). Dirección: Av. Instituto Politécnico
 Nacional #195, Col. Playa Palo de Sta. Rita Sur, La Paz Baja California Sur, C.P. 23096.
 México.

Ejemplares completos

Si se va a preparar como ejemplar de museo (voucher), se recomienda que se haga tan pronto se termine de recolectar la información de los pasos anteriores. Si no es posible, el animal se guardará vivo hasta el día siguiente para ser procesado. Si muere antes de procesarse, deberá extraerse una muestra de tejido muscular, para evitar la degradación del ADN. Una vez obtenida la muestra puede guardarse el cuerpo del ejemplar de inmediato en una bolsa de plástico bien cerrada y ser conservado en hielo o refrigeración hasta procesarse. En ningún caso deberá congelarse antes de tomar la muestra de tejido. Se procurará preparar todos los ejemplares como piel y cráneo estándar (siguiendo el procedimiento descrito en Hall, 1981,

Mammals of North America, por ejemplo, o en cualquier manual de mastozoología, Figura 7). Si no se cuenta con los medios para evitar la degradación del ejemplar, entonces deberán tomarse las muestras de tejido inmediatamente después de muerto y preservar (en alcohol) el resto del ejemplar. En este caso, se recomienda prepararlo como esqueleto completo si las condiciones climáticas son muy calientes. Los datos de preparación se incluirán en el catálogo correspondiente (Formato 4 - Catálogo de preparación). El número de colector corresponderá al ID del ejemplar y el colector será Sonozotz-AMMAC.

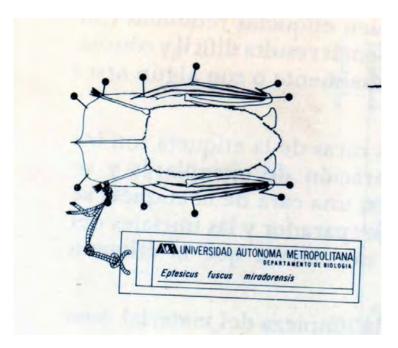


Figura 7. Ejemplar de murciélago preparado para museo.

I.3 DATOS AMBIENTALES

Temperatura y humedad relativa

El grupo de trabajo deberá contar con un medidor de temperatura y humedad relativa automático y programable (datalogger). Antes de iniciar la sesión de muestreo el dispositivo se programará para activarse por lo menos media hora antes de la puesta del sol (revisar hora local en GPS) y desactivarse media hora después de la salida del sol del siguiente día. El aparato se programará para tomar una medición de ambas variables cada 15 minutos. Se generará un archivo de datos para cada día de trabajo.

II. PROCESAMIENTO DE LA INFORMACIÓN EN CAMPO

II.1. Consideraciones generales

Se recomienda contar en campo con un dispositivo de almacenamiento externo (disco duro, memoria USB) con espacio suficiente para respaldar la información conforme se vaya generando. Por razones de seguridad y de eficiencia del funcionamiento de la computadora/detector, se recomienda no almacenar información en ésta. De ser posible, todo el proceso de etiquetado y organización de la información deberá llevarse a cabo en otra computadora.

II.2. Identificadores base

La figura 8 muestra todos los datos e identificadores que podrán estar asociados a un murciélago. El etiquetado y organización de la información sigue el esquema inicial: toda la información generada estará relacionada con un murciélago que se captura en un punto de la geografía terrestre. Se generarán dos identificadores de los cuales derivan todos los demás.

ID de la localidad: El punto geográfico se identificará con el número de la región, sitio y localidad. Este será consecutivo para cada sitio. Por ejemplo, si en la región 2, del sitio 1 se muestrean 5 localidades, sus ID de Localidad serán: 020101, 020102, 020103, 020104 y 020105. Así mismo, el ID de la primera localidad del sitio 2 de esa misma región seria 020201. La longitud de este identificador de localidad deberá ser siempre igual (i.e. 6 dígitos: siempre serán dos dígitos para la región, dos dígitos para el sitio y dos dígitos para la localidad).

ID del ejemplar: El murciélago se identificará con la clave de la localidad, guión y un número consecutivo de 1 a n, de modo tal que el primer ejemplar capturado en cada región será el 1 y el último, al término del proyecto, será el n. En el ejemplo anterior el primer ejemplar de la localidad 080101 será **080101-0001.** Debido a que el número de ejemplar es consecutivo por región solo puede haber un 0001 por región. De manera similar a los catálogos de preparación en ejemplares de colección, el coordinador de región llevará el control del número de inicio en

cada colecta. Si hay colectas simultáneas se darán números a los diferentes grupos de trabajo. NO IMPORTA SI QUEDAN NÚMEROS VACÍOS.

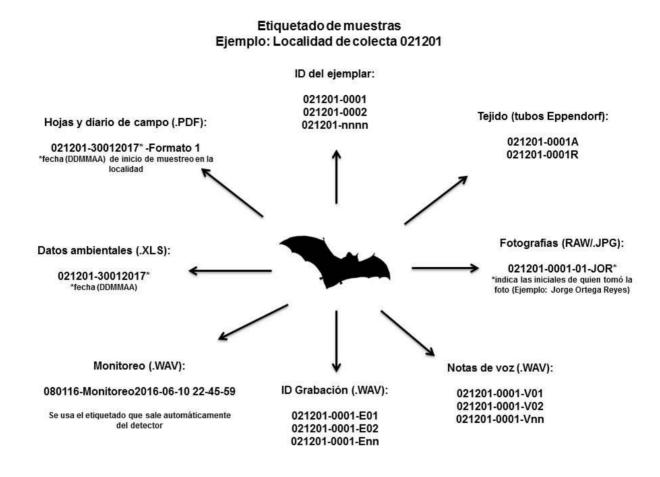


Figura 8. Esquema de etiquetado de los datos obtenidos en campo.

II.3 Formatos de campo

Durante el trabajo de campo se guardarán en una carpeta protegidos contra lluvia y otros daños. El líder del grupo (colaborador o coordinador regional) deberá verificar que las hojas estén completas, así como la información que contienen. Una vez en gabinete, cada hoja se escaneará en formato PDF. Estos archivos se nombrarán con la clave de la localidad, seguido de guión, fecha de inicio de muestreo en la localidad, seguido de guión y Formato X. Por

ejemplo, las hojas de campo de la localidad 080301 muestreada el 15 de Octubre del 2016 correspondientes al Formato 2 se nombrarán 080301-15102016-Formato 2. Si hay más de una hoja por formato se deberán escanear todas en el mismo PDF. Si se hace más de una visita a la misma localidad los formatos correspondientes a esa visita irán en PDFs separados pero todas las hojas del mismo formato de esa visita en el mismo archivo. También se debe escanear el diario de campo en caso de que se lleve uno de manera independiente. Éste se etiquetará de manera similar, en este ejemplo 080301-notas de campo. Todas las hojas se guardarán en una carpeta llamada **Formatos campo ID Localidad**.

II.4 Fotografías

Se descargarán las imágenes en la computadora en un archivo temporal. Cada foto será etiquetada con el ID del ejemplar, guión, un número consecutivo de 1 a n, guión y las iniciales del autor de la fotografía. Por ejemplo, si se seleccionaran 5 fotos del individuo 080613-0001 tomadas por Verónica Zamora Gutiérrez, la primera foto del ejemplar será numerada 080613-0001-01-VZG y la última sería la 080613-0001-05-VZG.

Las imágenes seleccionadas se guardarán en una carpeta llamada Fotos_ID Localidad.

Para cada ejemplar se creará una subcarpeta con el ID ejemplar (080613-0001 en este ejemplo).

Dentro de ésta se crearán dos subcarpetas más: CONABIO, en la cual se incluirán las imágenes que serán entregadas a la CONABIO y otra llamada Adicionales en la cual se incluirán todas las demás imágenes de ese individuo (Figura 8).

II.5 Grabaciones

Este proceso de etiquetado debe hacerse con sumo cuidado y *al final de cada día de trabajo*.

Antes de hacer cualquier modificación a los datos generados por cada sesión, se deberá crear una copia de los datos intactos en una carpeta nombrada **RAW_ID Localidad.** Dentro de ésta se creará una carpeta con el *ID del ejemplar*, en la cual incluirá las carpetas ch1 y ch2 tal y como se generaron en la computadora/detector, incluyendo los archivos log. Esta información

es un respaldo y no será modificada en ningún momento. La carpeta **RAW_ID Localidad** se colocará dentro de la carpeta **Grabaciones ID Localidad** (Fig. 9).

Las grabaciones serán revisadas en BatSoundPro. Durante del proceso de etiquetamiento de archivos, se debe hacer una depuración de los archivos de grabación que no contienen llamados de murciélagos o mensajes de voz para evitar archivos grandes sin información.

Las grabaciones de ecolocalización seleccionadas se etiquetarán con el ID del ejemplar, una E y un número consecutivo del 1 a n, por ejemplo 080613-0001-E01. Análogamente se etiquetarán las grabaciones de voz con una V, por ejemplo 080613-0001-V01. El número de grabación inicia en 01 para cada ejemplar. De manera simultánea, se deberá llenar el *Formato 3-Datos de Grabación*, en el que se registrará para cada **ejemplar**, las grabaciones asociadas a éste, la hora y modalidad de grabación, y los atributos del aparato usado.

Las grabaciones así etiquetadas se guardarán en una carpeta llamada **Grabaciones_ID Localidad**, la cual incluirá dos subcarpetas: **Grabaciones ecolocalizacion_ID Localidad** y **Grabaciones voz_ID Localidad.** Dentro de cada subcarpeta se creará una subcarpeta para cada ejemplar grabado, etiquetada con el **ID Ejemplar**, dentro de la cual se guardarán todas sus grabaciones (Fig. 8), las cuales que tendrán que corresponder a las registradas en el *Formato 3*.

Las grabaciones del monitoreo se guardarán en una carpeta llamada **Monitoreo_ID Localidad** y el nombre del archivo que sale automáticamente del detector no se modificara.

NOTAS:

- 1) El número de grabaciones no es igual al número de ejemplares, ya que de un mismo murciélago puede haber más de una grabación. Este es un identificador progresivo y fijo por lo que si alguna de las grabaciones se elimina en gabinete, los números no se recorren.
- 2) La carpeta de almacenamiento de grabaciones del detector deberá quedar limpia al inicio de la siguiente sesión de muestreo.
- 3) En ocasiones, las grabaciones de voz de cierto individuo pueden estar etiquetadas con el nombre del individuo previamente liberado o a los monitoreos de 5 minutos. Se sugiere

escuchar todas las notas de voz generadas para asignar correctamente las notas de voz al individuo que le corresponde.

II.6 Tejidos

Los tubos de tejidos se etiquetarán con el ID del ejemplar más una letra A si está preservados en etanol y una letra R si están preservados en RNA later (Fig. 8). Las muestras de cada tipo deberán almacenarse por separado.

II.5 Ejemplares completos

Las etiquetas de piel y cráneo de estos ejemplares deberán tener, además de toda la información usual en estos casos, el ID del ejemplar en lugar de número de preparador (o si se desea, además de éste) y la palabra "sonotzotz", por ejemplo sonozotz080613-0001. Los datos del ejemplar se registrarán en el *Formato 4-Catálogo de preparación*.

II.6 Datos ambientales

Se vaciarán íntegros a un archivo de excel (extensión .xls o xlsx), se etiquetarán por región y fecha (ej. 021201-02092016) y se guardarán en una carpeta llamada **Datos ambientales_ID Localidad** (Figura 8).

III. ORGANIZACIÓN DE DATOS PARA ENTREGA A COORDINADORES

En la figura 9 se muestra el esquema general de organización de datos de campo para una región cualquiera.

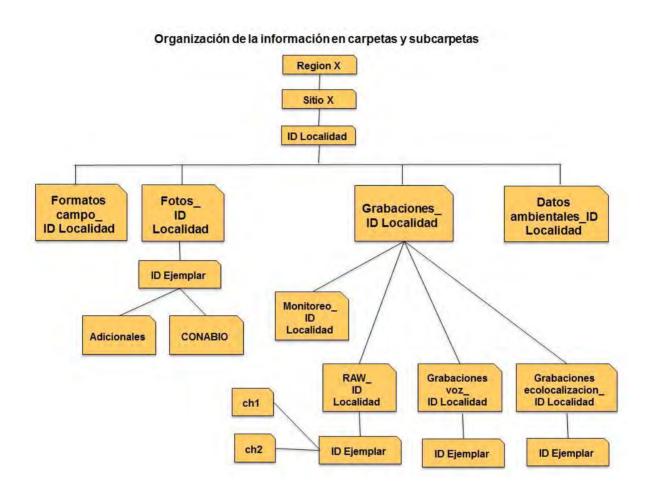


Figura 9. Esquema de organización de la información. El número de la región y la localidad se escribe sin ceros. Por ejemplo, la carpeta del sitio '2' será nombrada simplemente como 'Sitio 2'. La ID Localidad debe escribirse completa con sus 6 digitos. Por ejemplo, la carpeta de la localidad 021201 deberá ser nombrada como 021201.

La información para cada localidad y sitio se guardará en campo en una estructura similar. En gabinete se vaciará la información a las carpetas correspondientes para toda la región (**Region X**). Si no hay datos para una carpeta entonces no se va a crear la carpeta.

El paquete de carpetas para cada sitio se entregará a la coordinación regional inmediatamente después cada salida de campo. Las carpetas de grabación de la computadora/detector se deberán entregar limpias. Los coordinadores regionales almacenarán la información en un disco duro ex-profeso y subirán la información conforme se vaya generando vía FTP en los servidores de CONABIO. Los coordinadores regionales conservarán una copia de toda la información hasta el término del proyecto. Al final del proyecto, los coordinadores regionales tienen que recopilar todos los formatos originales llenados en campo y mandarlos por paquetería a la Dra. Cristina Mac Swiney González:

 Centro de Investigaciones Tropicales, Universidad Veracruzana. Calle José María Morelos y Pavón 44 y 46, Colonia Centro C.P. 91000. Xalapa, Veracruz. Tel. 228 186 22 43. Correo electrónico: cristina mac@hotmail.com; cmacswiney@uv.mx. IV. FORMATOS DE CAMPO E INSTRUCTIVOS

IV. 1 FORMATO 1-DESCRIPCIÓN DE LA LOCALIDAD

Se llenará un formato por día de trabajo.

Región/sitio/número localidad: Número de la región, sitio y localidad. Este será consecutivo para cada sitio. Por ejemplo, si en la región 2, del sitio 1 se muestrean 5 localidades, sus ID de Localidad serán: 020101, 020102, 020103, 020104 y 020105. Así mismo, el ID de la primera localidad del sitio 2 de esa misma región sería 020201. La longitud de este identificador de localidad deberá ser siempre igual (i.e. 6 dígitos: siempre serán dos dígitos para la región, dos dígitos para el sitio y dos dígitos para la localidad).

Estado: Estado de la República donde se encuentra la localidad.

Municipio: Nombre del municipio donde se encuentra la localidad.

Localidad: La definición de la localidad deberá seguir los estándares comunes en mastozoología (nombre de población, rancho, mina, lago, etc., o bien referencia geográfica a la población más cercana (e.g. 3 km S Pueblo Nuevo).

Coordenadas (UTM): Posición geográfica de la localidad en metros. Se deberán tomar en el sitio con un GPS. El aparato deberá estar en datum WGS84; primero se escribirá la coordenada X y luego la Y, y se deberá incluir el número de zona UTM de la coordenada.

Fecha: Se deberá escribir en formato dd/mm/aaaa. Si se trabaja más de un día en la localidad que se describe, generar una hoja por cada día.

Precisión del GPS: Grado de error del aparato en m.

Altitud: Elevación del sitio sobre el nivel del mar en m.

Datos Ambientales: se tomaron datos =1; no se tomaron datos=0.

Hora de la puesta del sol (hora local): Todas las horas irán en formato militar, ejemplo 2130 en lugar de 9:30 o 21:30.

Hora de la salida del sol (hora local): Todas las horas se escribirán en formato militar.

Tipo de hábitat: Descripción del hábitat de muestreo en formato libre.

Hora de inicio del muestreo (hora local): Si se trata de redes o arpas, la hora en que se abren o activan. Si el trabajo se lleva a cabo en cuevas o refugios, indicar hora a la que se inicia.

Hora de terminación del muestreo (hora local): Si se trata de redes o trampas arpa, la hora en que se quitan o inactivan. Si el trabajo se lleva a cabo en cuevas o refugios, indicar hora a la que se termina.

Esfuerzo de colecta: Número y tamaño de redes o trampas arpa utilizadas en la localidad en esa noche. Si no se usaron redes, describir método de colecta (manual, red de mariposa, etc.).

Equipo de trabajo e iniciales: Escribir nombre, iniciales y adscripción de los participantes en la colecta. Señalar quién aparecerá como colector en las bases de datos.

Compilación de fonoteca de referencia de murciélagos insectívoros de México: Fase I

(CONABIO-AMMAC ME004)

Formato 1: Descripción de la localidad

Región/Sitio/Número Localidad (ID Localidad):	Estado:		
Municipio:	Localidad:		
Coordenadas y zona UTM (Datum WGS84):	Fecha (dd/mm/aaaa):		
Precisión del GPS (m):	Altitud (m):	Datos Ambientales:	
Puesta del Sol (hora local según GPS, formato militar e.g. 2130):	Salida del Sol (hora local según GPS, formato militar e.g. 2130):		
Tipo de hábitat:			
Hora de inicio de muestreo:	Hora de terminación del muestreo:		
Esfuerzo de colecta (número de redes o trampas y tamaño):	Equipo de trabajo e iniciales:		

IV.2 FORMATO 2-DATOS DE EJEMPLARES

Se llenará un formato por cada localidad.

ID Localidad: Como se registró en el Formato 1 (ej. 080316).

Fecha: La fecha de captura de los ejemplares. Por consistencia y para evitar errores, los animales capturados después de las 12 de la noche llevarán la misma fecha de colecta que aquellos capturados antes de las 12 de la noche.

Persona(s) que identifica(n): Nombre e iniciales de la o las personas que identificarán los murciélagos en esa sesión, ej.: José Antonio Guerrero (JAG). Esta persona deberá ser la que toma la medida del antebrazo. Si se usan siglas, indicar nombre completo de la persona en la hoja. ID Ejemplar. Identificador universal del ejemplar capturado. Se construye con el código de la localidad, se agrega un guión y se le asigna un número progresivo que generalmente representa el orden de captura. Así, al primer ejemplar de la noche de la localidad 080316 le corresponderá el identificador 080316-0001. NÓTESE QUE EL NÚMERO DE GRABACIONES NO ES IGUAL AL NÚMERO DE EJEMPLARES. YA QUE DE UN MISMO MURCIÉLAGO PUEDE HABER MÁS DE UNA GRABACIÓN. NÓTESE TAMBIÉN QUE ESTE ES UN IDENTIFICADOR PROGRESIVO Y FIJO, ES DECIR, SI ALGUNO DE LOS EJEMPLARES NO SE INCLUYE, LOS NÚMEROS NO SE RECORREN, EL EJEMPLAR 080316-0001 SIEMPRE LLEVARÁ ESE NÚMERO, NO IMPORTA CUAL SEA SU DESTINO FINAL. ESTO ES DE SUMA IMPORTANCIA YA QUE EN CAMPO ESTE IDENTIFICADOR SE CRUZARÁ CON EL DE GRABACIÓN, EL CUAL TAMPOCO CAMBIA EN TODO EL PROCESO. LA PERSONA RESPONSABLE DEL ETIQUETADO DE CAMPO, ASÍ COMO EL RESPONSABLE DE PROCESAR EN GABINETE, DEBERÁN TENER MUY CLARO ESTE SISTEMA. ESTOS DOS NÚMEROS ACOMPAÑARÁN A LAS GRABACIONES DE PRINCIPIO A FIN DEL PROYECTO.

Especie: Nombre completo de la especie si se tiene, o bien, género si no se sabe la especie. La nomenclatura taxonómica seguirá a Ramírez-Pulido et al. 2014.

Hora de captura: En formato militar, ej. 2130 (NO 21:30 NI 9:30).

Certeza ID (%): Porcentaje de certeza de la identificación. Al final del proyecto, el colector tendrá que asegurarse que se logre un 100%.

Identificó: Iniciales de la persona que identificó los ejemplares de esa sesión.

Sexo (SEX): H= hembra, M=macho, D= desconocido.

Condición reproductiva (CR): Hembras: I= vagina inactiva o cerrada, P= preñada, L= lactante, PL= postlactante. Machos: posición de los testículos; TA=abdominales, TE= escrotados, TI= inguinales.

Edad relativa (ED): 1= juvenil (falanges no fusionadas, dentadura decidua puede estar presente, pelaje grisáceo o escaso), 2= adulto (falanges fusionadas, dentadura permanente).

Masa (g): Masa del ejemplar tomada (de ser posible) hasta una décima de precisión.

Antebrazo (AB) (mm): Longitud estándar del antebrazo tomada con un vernier a una décima de precisión.

Grabación (G): 1= sí se grabó, 0= no se grabó.

Fotografía (F): 1= sí se tomó, 0= no se tomó.

Tejido (T): 1= sí se tomó, 0= no se tomó. Las muestras de tejidos serán biopsias alares, si se trata de otro tipo de muestra deberá especificarse en el *Catálogo de preparación* (ver adelante).

Ejemplar (E): 1= sí se colectó, 0= no se colectó. El tipo de preparación del ejemplar se especificará en el *Formato 4- Catálogo de preparación* (ver adelante).

Compilación de fonoteca de referencia de murciélagos insectívoros de México: Fase I (CONABIO-AMMAC ME004)

Formato 2: Datos de ejemplares

ID Localidad (nu	ID Localidad (numérica) SEX: H= Hembra, M= Macho													
Fecha						CR: I= vagina inactiva o cerrada, P= preñada, L= lactante, PL= postlactante,								
Persona(s) que	identifica(n)					TA= test	ículos a	bdominal	es; TE= tes	tículo	s esc	rotad	los; TI	= testículos
					inguinales									
					ED :1= Juvenil, 2=Adulto									
						AB = ante	AB= antebrazo.							
						G =graba	ición; F :	= foto; T = 1	tejido, E= 6	ejemp	lar (1	L=SI; (O-NO)	
15 E' 1		Hora de	Certeza ID		651/	-		Masa	AB	G	F	Т	E	Notas
ID Ejemplar	Especie	captura	(%)	Identificó	SEX	CR	ED	(g)	(mm)					

IV.3 FORMATO 3-DATOS DE GRABACIÓN

Se llenará un formato por cada localidad.

Datos del detector

Detector: Número progresivo de 1 a n si se utiliza más de un detector. Para las grabaciones con el equipo del proyecto deberá escribirse como 'USG 116H'.

Frec. (kHz): Indicará la frecuencia de muestreo de la grabación en kilohertz. Para las grabaciones con el equipo del proyecto deberá escribirse como '300'.

Resol. (bits): Indicará la resolución de la muestra en bits. Para las grabaciones con el equipo del proyecto deberá escribirse como '16'.

Expansión Tiempo: Contendrá el número de la expansión de tiempo de la grabación. Para las grabaciones con el equipo del proyecto deberá escribirse como '1'.

Filtro: Indicar la frecuencia (KHz) del filtro utilizado en la grabación. Para las grabaciones con el equipo del proyecto deberá escribirse como 'ADC'.

Micrófono: Marca y modelo del micrófono utilizado en la grabación. En caso de no tener los datos se indicará *No disponible*. Para las grabaciones con el equipo del proyecto deberá escribirse como 'CM16/CMPA'.

Almacenamiento: Indicará el soporte donde fueron almacenadas las grabaciones al momento de ser grabadas (tarjeta compact flash 2, cinta de cassette, minidisco, cinta DAT, carrete a carrete, tarjeta SD, disco duro de computadora, otro). Para las grabaciones con el equipo del proyecto deberá escribirse como 'disco duro computadora'.

Otro: Filtros, calibración, o cualquier otro dato que se considere necesario indicar, si existen datos de tarjetas la información se incluirá aquí.

Datos grabación

ID Ejemplar: Identificador universal del ejemplar tal como se determinó en el *Formato 2-Datos de ejemplares* (ej. 080316-0001).

ID Grabación: se forma con el ID del ejemplar, una E y un número consecutivo del 1 a n, por ejemplo 080613-0001-E01. Análogamente se etiquetarán las grabaciones de voz con una V, por ejemplo080613-0001-V01. El número de grabación inicia en 01 para cada ejemplar.

Hora: Hora en la que se realizó la grabación en formato militar.

Observadores: Siglas de las personas que participaron en la grabación, separados por comas. Si se utilizan siglas se deberá mandar referencia de a quien se refieren. Tienen que ser personas incluidas en el padrón de colectores.

Tipo de liberación: Clave asignada a la forma en que se liberó al individuo para su grabación: 1= liberado de mano, 2= tirolesa, 3= vuelo libre, 4= saliendo de sitio de percha, 5= jaula de vuelo, 6= cuarto/laboratorio, 7= en la bolsa, 8= perchando, y 9= despegue de sustrato (*ej.* palmera, pértiga, poste, etc.).

Ambiente de grabación: Clave asignada a las características del sitio donde se llevó a cabo la grabación:

- 1) abierto.
- 2) camino o claro con vegetación de dosel en los flancos.
- 3) camino inmerso en la vegetación.
- 4) borde (transición entre un área abierta y vegetación).
- 5) emergencia de percha.
- 6) dentro de sitio de percha (e.g. cueva o mina).
- 7) cuarto/laboratorio.
- 8) abierto sobre agua.
- 9) borde de vegetación sobre agua.
- 10) emergencia de percha sobre agua.
- 11) en sitio de percha sobre agua.
- 12) otro (especificar).

Altura Vuelo: Expresada en metros, indicará un estimado de la altura a la que el individuo volaba al momento de hacer la grabación.

Detector: Número de detector utilizado para tomar la grabación, como se especifica en la primera parte del formato.

Notas: Se harán observaciones BREVES y CONCISAS sobre la calidad de la grabación (ej. sucia, saturada, tenue, etc.), en caso de contaminación con llamados de otras especies que no hayan sido el objetivo de la grabación (ej. varias especies, contaminada, etc.), o si hay diferentes tipos de llamados (ej. llamados sociales, de alimentación, raros, etc.).

Compilación de fonoteca de referencia de murciélagos insectívoros de México: Fase I"

(CONABIO-AMMAC ME004)"

Formato 3: Datos de grabación

Datos del detector

Detector	Frec.	Resol.	Exp.	Filtro	Micrófono	Almacén.	Otro
	(kHz)	(bits)	Tiempo				
1							
2							
3							

Datos de grabación

ID Ejemplar	ID Grabación	Hora	Observadores	Tipo Liberación	Ambiente Grabación	Altura Vuelo (m)	Detector	Notas

IV.4 FORMATO 4-CATÁLOGO DE PREPARACIÓN

Se llenará un formato por cada localidad.

Equivale al catálogo de preparación tradicionalmente usado en Mastozoología. Se repite información que está en otras hojas debido a que este catálogo tiene fines exclusivamente curatoriales para los ejemplares colectados. Es posible que dicho catálogo se separe del resto de la información del proyecto, y sea resguardado de otra manera y en un sitio diferente a aquel en donde se conserven las grabaciones/fotos. Será utilizado únicamente en aquellos ejemplares que se capturen y eventualmente se integren a una colección científica.

ID Ejemplar: Identificador universal del ejemplar como se describe en el *Formato 2-Datos de ejemplares* (Ej. 080316-0001). En la etiqueta de piel y cráneo del ejemplar se pondrá como **sonotzotz 080316-0001.**

Localidad: Completa y como se registró en el formato correspondiente, se agregará además la clave (080316 en el ejemplo anterior).

Fecha: La fecha de captura del ejemplar. Por consistencia y para evitar errores, los animales capturados después de las 12 de la noche llevarán la misma fecha de colecta que aquellos capturados antes de las 12 de la noche.

Sexo: H= hembra, M= macho

Condición reproductiva (CR): Hembras: I= vagina inactiva o cerrada, P= preñada, L= lactante, PL = postlactante. Machos: posición de los testículos; TA=abdominales, TE= escrotados, TI= inguinales **Especie:** nombre completo de la especie si se tiene, género si no se sabe la especie.

LT, C, P, O, AB, M (g): medidas externas estándar: LT= longitud total, C= longitud de la cola vertebral, P= longitud de la pata trasera (con uñas), O= longitud de la oreja desde la escotadura, AB= longitud del antebrazo (deberá corresponder a la del *Formato 2*), todas en mm, masa corporal en gramos (también deberá corresponder a la del *Formato 2*). La manera de tomar esta información se describe en Hall (1981) y manuales de mastozoología varios.

Tejido (T): 1= si es biopsia alar, 2= si se trata de otro tipo de muestra (especificar).

Tipo prep.: Tipo de preparación: 1= Piel y cráneo, 2= Piel y esqueleto, 3= Sólo esqueleto, 4= Solo piel, 5= Ejemplar fijado en formol y preservado en alcohol, 6= otro (especificar).

Preparador: Nombre completo de la persona que prepara el ejemplar.

Colección destino: Colección en la cual se depositará el ejemplar.

Compilación de fonoteca de referencia de murciélagos insectívoros de México: Fase I (CONABIO-AMMAC ME004)

Formato 4: Catálogo de preparación

Localidad (completa y clave):

Fecha (de colecta, no de preparación):

ID	Localidad	Fecha	Sexo	CR	Especie	*LT	*C	*P	*0	*AB	М	Т	Tipo	Preparador	Colección
Ejemplar											(g)		prep.		destino

^{*}Nota: medidas en mm

V. ANEXOS

V.1 Anexo 1

Regiones y sitios de colecta proyecto ME004

Junio de 2016

Coordinador General: Miguel Ángel Briones Salas

Coordinadoras Técnicas: María Cristina Mac Swiney González y Verónica Zamora Gutiérrez

Técnico: Fernando Montiel Reyes

Técnico: Margarita García Luis

Regiones	Coordinadores
1 Región Californiana	Patricia Cortés Calva, Verónica Zamora Gutierrez
2 Región Noroeste	Celia López González
3 Región Occidente	Luis Ignacio Íñiguez Dávalos, Romeo Saldaña Vázquez
4 Región Oriente	María Cristina Mac Swiney González
5 Región Centronorte	Jorge Ortega Reyes, Melina Del Real Monroy
6 Región Centrosur	José Antonio Guerrero Enríquez
7 Región Sureste	Celia I. Sélem Salas, María Cristina Mac Swiney González
8 Región Suroeste	Rafael Ávila Flores

Sitios por región

Calif	Californiana										
1	1	Baja California	Rumorosa	32.53	-116.08						
1	2	Baja California	Valle de Guadalupe	32.26	-116.72						
1	3	Baja California	Ej Erendira	31.13	-115.92						
1	4	Baja California	Mina	29.53	-114.23						

1	5	Baja California Sur	Mulege	26.89	-111.98
1	6	Baja California Sur	San José de Castro	27.53	-114.47
1	7	Baja California Sur	Loreto	26.38	-115.6
1	8	Baja California Sur	Sierra La Laguna	23.8	-110.1
1	9	Sonora	Mina San Alberto	27.34	-108.95
1	10	Sonora	Santa Ana	30.54	-111.15
1	11	Sonora	El Pinacate	32.15	-114.16
1	12	Sonora	Bacum	27.54	-110.06
Noro	este			<u>'</u>	
2	1	Durango	Mezquital	23.47	-104.39
2	2	Durango	Guanaceví	25.93	-105.95
2	3	Durango	Nazas	25.22	-104.11
2	4	Durango	Presa Lázaro Cárdenas	25.59	-105.02
2	5	Chihuahua	Delicias	28.19	-105.47
2	6	Chihuahua	San Juanito	27.96	-107.60
2	7	Chihuahua	Casas Grandes	30.37	-107.95
2	8	Chihuahua	Col. García	29.97	-108.33
2	9	Chihuahua	Ojinaga	29.56	-104.41
2	10	Sinaloa	Badiraguato	25.36	-107.55
2	11	Sinaloa	Escuinapa	22.83	-105.77
Occio	lente				
3	1	Jalisco	Estación Científica Las	19.58	-104.27
			Joyas	13.30	10
3	2	Jalisco	Cueva del Altilte, Mpio. la	19.52	-104.58
			Huerta		- 100
3	3	Jalisco	Cueva el Chapuzón, Mpio.	20.55	-103.68
			Tala		

3	4	Jalisco	Cueva Torrecillas, Mpio.	10.51	102.00
			Toliman	19.51	-103.98
3	5	Jalisco	Santa Catarina	22.22	-103.91
			Cuexcomatitlán	22.22	-103.91
3	6	Jalisco	Arrollo los Sabinos, Mpio.	20.37	-103.30
			Jocotepec,	20.57	103.30
3	7	Jalisco	Río Verde, Mpio. Acatic	20.83	-102.94
3	8	Jalisco	La Cuesta, Mpio. Talpa de	20.18	-104.82
			Allende	20.20	20 1102
3	9	Colima	Río Marabasco	19.41	-104.05
3	10	Colima	Laguna de Cuyutlán	18.90	-104.03
3	11	Michoacán	Tiristarán	19.86	-101.03
3	12	Michoacán	Uruapan	19.54	-102.22
3	13	Jalisco	Chamela	19.31	-105.44
Orier	nte				
4	1	San Luis Potosí	Sierra Gorda, Xilitla	21.38	-99.05
4	2	Veracruz	Sierra de Otontepec	21.27	-97.87
4	3	Veracruz	Tuxpan	20.96	-97.34
4	4	Veracruz	Huayacocotla	20.52	-98.48
4	5	Veracruz	Remolino	20.38	-97.21
4	6	Puebla	Sierra Norte de Puebla	19.94	-97.42
4	7	Veracruz	Santa Gertrudis	19.84	-96.58
4	8	Puebla y Veracruz	Cofre de Perote	19.57	-97.18
4	9	Veracruz	Bosques Xalapa-Coatepec	19.52	-96.98
4	10	Veracruz	Estación Costera La	19.59	-96.38
			Mancha		
4	11	Veracruz	Valle del Río de la Antigua	19.36	-96.67
4	12	Tlaxcala y Puebla	La Malinche	19.23	-98.02

4	13	Puebla	Sierra del Tentzo	18.42	-98.57
4	14	Puebla	Tehuacán	18.46	-97.41
4	15	Veracruz	Lagunas de Alvarado y	18.6539	-95.5515056
			Lerdo	417	
4	16	Veracruz	Los Tuxtlas	18.5229	-95.1509972
				722	
4	17	Veracruz	Parque Ecológico	18.1113	-94.3579389
			Jaguaroundi	778	
4	18	Veracruz	Uxpanapa	17.2727	-94.3639972
				167	
Centi	ronorte				
5	1	Zacatecas	Mina inactiva de mercurio	24.04	-102.12
			Nuevo Mercurio, San		
			Felipe Mazapil		
5	2	Zacatecas	Presa Susticacán (túnel de	22.60	-103.26
			la pesa), Susticacán		
5	3	Zacatecas	Zona Arqueológica "Las	21.39	-103.188
			Ventanas", Juchipila		
5	4	Zacatecas	El Socavón de la Purísima,	22.84	-102.55
			Vetagrande		
5	5	Aguascalientes	Cueva de los Murciélagos,	22.02	-102.67
			Ejido Terrero de la Labor,		
			Calvillo		
5	6	Aguascalientes	Hacienda de La Punta,	22.32	-102.29
			Cosío		
5	7	Guanajuato	San Mateo Tócuaro	20.00	-100.71
5	8	Guanajuato	San Luis de la Paz	21.29	-100.51
5	9	Guanajuato	Guanajuato	21.01	-101.25

5	10	San Luis Potosí	Cueva La Joya Honda de	22.18	-100.94
			Lapuente, 22.4 km al Sur		
			de San Francisco, Soledad		
			de Graciano Sánchez		
5	11	San Luis Potosí	Cueva de los Coyotes, 3	22.37	-100.24
			km al Este de Los Amoles,		
			Guadalcázar		
5	12	San Luis Potosí	Mina Cerro San Pedro,	22.13	-100.49
			Cerro de San Pedro		
Cent	rosur				
6	1	Michoacán	Uruapan	19.40	-102.04
6	2	Guerrero	Chilpancingo	17.55	-99.49
6	3	Hidalgo	Xilitla	21.36	-98.98
6	4	Querétaro	Pinal de Amoles, Sierra	21.13	-99.62
			Gorda		
6	5	Estado de México	Ixtapan de la Sal	18.84	-99.67
6	6	Morelos	Estación Científica EL	18.51	-98.91
			limón, Sierra de Huautla		
6	7	Hidalgo	Meztitlan	20.60	-98.78
6	8	Estado de México	Valle de Bravo	19.19	-100.13
6	9	Morelos	Zempoala	19.05	-99.31
6	10	Estado de México	Arroyozarco – Jilotepec	19.95	-99.53
6	11	Querétaro	Querétaro 1 (Por definir	20.20	-101.13
			coordenadas)		
6	12	Ciudad de México	Santa Ana Tlacotenco,	19.17	-98.99
			Milpa Alta		
Sure	ste			•	<u>'</u>
7	1	Yucatán	Dzilam	21.28	-88.92
L	1	1	l .	1	

7	2	Yucatán	El Cuyo, Reserva de la	21.51	-87.67
			Biosfera Ría Lagartos		
7	3	Yucatán	Rancho Hobonil, Tzucacab	20.02	-89.01
7	4	Yucatán	Loltún	20.25	-89.45
7	5	Campeche	Calakmul	18.51	-89.74
7	6	Campeche	El Remate	20.53	-90.37
7	7	Campeche	Isla Aguada	18.78	-91.49
7	8	Quintana Roo	Bacalar	18.67	-88.39
7	9	Quintana Roo	Reserva Ecológica El Edén	21.21	-87.19
7	10	Quintana Roo	José María Morelos	19.77	-88.73
7	11	Quintana Roo	Cobá	20.49	-87.73
7	12	Quintana Roo	Sian Kaán	19.38	-87.79
Suro	este			-	
8	1	Chiapas	Campamento Concepción,	15.06	-92.75
			Reserva de la Biósfera La		
			Encrucijada		
8	2	Chiapas	Cueva Los Laguitos, Tuxtla	16.79	-93.14
			Gutiérrez		
8	3	Chiapas	Área de Protección de	17.12	-91.61
			Flora y Fauna Metzabok		
8	4	Chiapas	Campamento El Triunfo,	15.65	-92.80
			Reserva de la Biósfera El		
			Triunfo		
8	5	Tabasco	Tapijulapa, Parque Estatal	17.45	-92.77
			de La Sierra		
8	6	Tabasco	Sánchez Magallanes,	18.29	-93.86
			Cárdenas		

8	7	Tabasco	Tenosique, Área de	17.47	-91.42
			Protección de Flora y		
			Fauna Cañón del		
			Usumacinta		
8	8	Oaxaca	Parque Nacional Huatulco	15.76	-96.19
8	9	Oaxaca	Cerro Tolistoque, Juchitán	16.57	-94.87
8	10	Oaxaca	Santiago Apoala,	17.64	-97.13
			Nochixtlán		
8	11	Oaxaca	Villa Talea de Castro	17.36	-96.24
8	12	Oaxaca	San Sebastián de las	16.63	-96.95
			Grutas		

V. 2 Anexo 2 Padrón de colectores, proyecto ME004

Región	Colectores	Adscripción	
1 Región	Dra. Patricia Cortés Calva	Centro de Investigaciones Biológicas del	
Californiana		Noroeste S. C (CIBNOR)	
	M en C. Aldo Guevara Carrizales	Universidad Autónoma de Baja California	
		(UABC).	
	Dr. Eduardo Romero Vivas	CIBNOR	
	Biol. Mayra de la Paz Cuevas	CIBNOR	
2 Región Noroeste	Dra. Celia López González	CIIDIR IPN Durango	
	Dra. Verónica Zamora Gutiérrez	CIIDIR IPN Durango	
	M. en C. Aldo A. Guevara Carrizales	UABC	
	M. en C. Alfredo Leal Sandoval	Facultad de Agronomía, Universidad	
		Autónoma de Sinaloa	
	M. en C. Abraham Lozano Mendoza	CIIDIR IPN Durango	
	Biol. Ángel García Rojas	CIIDIR IPN Durango	
	M. en C. Guillermo Vázquez	IIES-UNAM	
	Domínguez		
3 Región Occidente	Dr. Luis Ignacio Iñiguez Dávalos	Departamento de Ecología y Recursos	
		Naturales-IMECBIO, Universidad de	
		Guadalajara	
	M. en C. Martha Pilar Ibarra López	Departamento de Ecología y Recursos	
		Naturales-IMECBIO, Universidad de	
		Guadalajara	
	M. en C. Héctor Leonel Ayala Téllez	CUCBA Universidad de Guadalajara	
	Dr. Romeo Alberto Saldaña Vázquez	CIECO Morelia UNAM	
	Biol. Marcial Alejandro Rojo Cruz		

		Departamento de Ecología y Recursos
	Est. Irna. Jesús Carlo Cuevas	Naturales-IMECBIO, Universidad de
	González	Guadalajara
		Departamento de Ecología y Recursos
	Dra. María Magdalena Ramírez	Naturales-IMECBIO, Universidad de
	Martínez	Guadalajara
	Widitaliez	Departamento de Ecología y Recursos
	Dr. Víctor Sánchez Cordero	Naturales-IMECBIO, Universidad de
	Dr. victor sanchez cordero	
		Guadalajara
		Instituto de Biología
4 Región Oriente	Dra. Cristina Mac Swiney González	CITRO Universidad Veracruzana
	Dr. Antonio Guillén Servent	Instituto de Ecología AC
	Dr. Juan Manuel Pech Canché	Universidad Veracruzana Unidad Tuxpan
	Biól. Alejandro Soto Castruita	Universidad Autónoma de Tlaxcala
	Dr. Jorge Ayala Berdón	Universidad Autónoma de Tlaxcala
	M. en C. Concepción López Tellez	Benemérita Universidad Autónoma de Puebla
	Dr. Víctor Sánchez Cordero	Instituto de Biología UNAM
	Dra. Beatriz Bolívar Cimé	INIFOR Universidad Veracruzana
	Mtro. Pedro Aguilar Rodríguez	CITRO Universidad Veracruzana
5 Región	Dr. Jorge Ortega Reyes	ENCB IPN
Centronorte	Dra. Melina Del Real Monroy	Universidad Autónoma de Zacatecas
	Dra. Cynthia Elizalde Arellano	ENCB IPN
	Dr. Juan Carlos López Vidal	ENCB IPN
	M. en C. Juan Cruzado Cortés	Estudios Especializados en Biodiversidad
		(ONG)
	Est. Abel Castillo Pérez	Universidad Autónoma de Zacatecas
		Escuela Nacional de Ciencias Biológicas IPN

	P. de B. Edgar Guillermo Gutiérrez	
	González	
6 Región Centrosur	M. en C. Carmen Lorena Orozco	Universidad Autónoma del Estado de Morelos
	Lugo	(CIByC- UAEM)
	Dra. Areli Rizo Aguilar	Facultad de Ciencias Biológicas, UAEM
	Dr. José Antonio Guerrero Enríquez	Facultad de Ciencias Biológicas, UAEM
	Dr. David Valenzuela Galván	Universidad Autónoma del Estado de Morelos
		(CIByC- UAEM)
	Dr. José Cuauhtémoc Chávez Tovar	UAM Lerma
	Dr. Romeo Alberto Saldaña Vázquez	IIES UNAM
	Luis Gerardo Avila Torresagaton	Facultad de Ciencias Biológicas, UAEM
7 Región Sureste	Dra. Celia Sélem Salas	Universidad Autónoma de Yucatán (UADY)
	Dra. Cristina MacSwiney González	CITRO Universidad Veracruzana
	Dr. Jorge Albino Vargas Contreras	Universidad Autónoma de Campeche
	M. en C. Javier Enrique Sosa	Centro de Gestión para la Sustentabilidad, A.
	Escalante	C.
	Est. Elena Uribe Bencomo	Universidad Autónoma de Yucatán (UADY)
	Est. Juan Catzim Soberanis	Instituto Tecnológico Conkal (ITC)
8 Región Suroeste	Dr. Rafael Ávila Flores	Universidad Juárez Autónoma de Tabasco
	Dr. Miguel Ángel Briones Salas	CIIDIR IPN Oaxaca
	M. en C. Margarita García Luis	CIIDIR IPN Oaxaca
	M. en C. Luis Arturo Hernández	Tierra Verde Naturaleza y Cultura, A.C., Tuxtla
	Mijangos	Gutiérrez, Chiapas
	Dra. Alba Zulema Rodas Martínez,	Universidad Juárez Autónoma de Tabasco
	P. de Biól. Lucio Pérez Hernández.	Universidad Juárez Autónoma de Tabasco
	Dr. Rodrigo García Morales	Centro del Cambio Global y la Sustentabilidad
		en el Sureste, Villahermosa, Tabasco

M. en C. Matías Martínez Coronel	UAM- Iztapalapa
M. en C. Cristian Kraker	El Colegio de la Frontera Sur Unidad San
	Cristóbal, San Cristóbal de las Casas, Chiapas

V.3 Anexo 3 Especies y gremios tróficos

Familia	Especie	Gremio	Ambiente de
raillild			grabación
	Balantiopteryx io	Aéreo en espacios abiertos	Abierto
	Balantiopteryx plicata	Aéreo en espacios abiertos	Abierto
	Centronycteris centralis		
	Diclidurus albus	Aéreo en espacios abiertos	Abierto
Emballonuridae	Peropteryx kappleri		
Embanonundae	Peropteryx macrotis	Aéreo en espacios abiertos	Abierto
	Rhynchonycteris naso	Arrastre (sobre agua) en zonas	Borde de preferencia
		de borde	cerca del agua
	Saccopteryx bilineata	Aéreo de zonas de borde	Borde
	Saccopteryx leptura	Aéreo de zonas de borde	Borde
	Cynomops mexicanus		
	Eumops auripendulus	Aéreo en espacios abiertos	Abierto
	Eumops nanus	Aéreo en espacios abiertos	Abierto
	Eumops ferox	Aéreo en espacios abiertos	Abierto
	Eumops hansae	Aéreo en espacios abiertos	Abierto
	Eumops perotis	Aéreo en espacios abiertos	Abierto
Molossidae	Eumops underwoodi	Aéreo en espacios abiertos	Abierto
	Molossus alvarezi	Aéreo en espacios abiertos	Abierto
	Molossus aztecus	Aéreo en espacios abiertos	Abierto
	Molossus coibensis	Aéreo en espacios abiertos	Abierto
	Molossus molossus	Aéreo en espacios abiertos	Abierto
	Molossus pretiosus	Aéreo en espacios abiertos	Abierto
l	Molossus rufus	Aéreo en espacios abiertos	Abierto

	Molossus sinaloae	Aéreo en espacios abiertos	Abierto
	Nyctinomops aurispinosus	Aéreo en espacios abiertos	Abierto
	Nyctinomops	Aéreo en espacios abiertos	Abierto
	femorosaccus		
	Nyctinomops laticaudatus	Aéreo en espacios abiertos	Abierto
	Nyctinomops macrotis	Aéreo en espacios abiertos	Abierto
	Promops centralis	Aéreo en espacios abiertos	Abierto
	Tadarida brasiliensis	Aéreo en espacios abiertos	Abierto
	Mormoops megalophylla	Aéreo de zonas de borde	Borde
	Pteronotus davyi	Aéreo de zonas de borde	Borde
Marmanidae	Pteronotus gymnonotus	Aéreo de zonas de borde	Borde
Mormoopidae	Pteronotus parnellii	Aleteo en espacios cerrados	Cerrado o Estacionario
	Pteronotus personatus	Arrastre (sobre agua) en zonas	Borde de preferencia
		de borde	cerca del agua
Natalidae	Natalus mexicanus	Aéreo de zonas de borde	Borde o Cerrado
Ivatalidae	Natalus lanatus	Aéreo de zonas de borde	Borde o Cerrado
	Noctilio albiventris		
Noctilionidae	Noctilio leporinus	Arrastre (sobre agua) en zonas	Abierto o Borde de
- Noetmoniaae		de borde	preferencia cerca del
			agua
Phyllostomidae	Todas	Recolectores de espacios	Cerrado
,		cerrados	
Thyropteridae	Thyroptera tricolor	Aéreo de zonas de borde	Abierto
	Antrozous pallidus	Recolectores de espacios	Cerrado
Verspertilionidae		cerrados	
	Bauerus dubiaquercus	Recolectores de espacios	Cerrado
		cerrados	

Corynorhinus mexicanus	Recolectores de espacios	Cerrado
	cerrados	
Corynorhinus townsendii	Recolectores de espacios	Cerrado
	cerrados	
Eptesicus brasiliensis	Aéreo de zonas de borde	Borde
Eptesicus furinalis	Aéreo de zonas de borde	Borde
Eptesicus fuscus	Aéreo de zonas de borde	Borde
Euderma maculatum		
Idionycteris phyllotis	Recolectores de espacios	Cerrado
	cerrados	
Lasionycteris noctivagans	Aéreo de zonas de borde	Borde
Lasiurus blossevillii	Aéreo de zonas de borde	Borde
Lasiurus borealis	Aéreo en espacios abiertos	Abierto
Lasiurus cinereus	Aéreo en espacios abiertos	Abierto
Lasiurus ega	Aéreo de zonas de borde	Borde
Lasiurus intermedius	Aéreo en espacios abiertos	Abierto
Lasiurus xanthinus	Aéreo de zonas de borde	Borde
Myotis albescens		
Myotis auriculus	Recolectores de espacios	Cerrado
	cerrados	
Myotis californicus	Aéreo de zonas de borde	Borde
Myotis carteri		
Myotis elegans		
Myotis evotis		
Myotis findleyi		
Myotis fortidens		
Myotis keaysi	Aéreo de zonas de borde	Borde
4	•	•

Myotis melanorhinus	Aéreo de zonas de borde	Borde
Myotis nigricans		
Myotis occultus		
Myotis peninsularis		
Myotis planiceps		
Myotis thysanodes	Recolectores de espacios	Cerrado
	cerrados	
Myotis velifer	Arrastre (sobre agua) en zonas	Borde de preferencia
	de borde	cerca del agua
Myotis vivesi	Arrastre (sobre agua) en zonas	Borde de preferencia
	de borde	cerca del agua
Myotis volans	Aéreo de zonas de borde	Borde
Myotis yumanensis	Arrastre (sobre agua) en zonas	Borde de preferencia
	de borde	cerca del agua
Nycticeius humeralis	Aéreo de zonas de borde	Borde
Pipistrellus hesperus	Aéreo de zonas de borde	Borde
Pipistrellus subflavus	Aéreo de zonas de borde	Borde
Rhogeessa aeneus	Aéreo de zonas de borde	Borde
Rhogeessa alleni	Aéreo de zonas de borde	Borde
Rhogeessa genowaysi	Aéreo de zonas de borde	Borde
Rhogeessa gracilis	Aéreo de zonas de borde	Borde
Rhogeessa mira	Aéreo de zonas de borde	Borde
Rhogeessa parvula	Aéreo de zonas de borde	Borde
Rhogeessa tumida	Aéreo de zonas de borde	Borde

V.4 Anexo 4

Lista de Material y equipo

Muestras de material genético

Tijeras de corte fino o sacabocados de biopsia ("biopsy punch" de 3 mm de diámetro).

Tubos de tapa de rosca con empaque plástico de 1.8 ml o tubos Eppendorf.

Alcohol puro al 96%.

Papel Parafilm ®.

Rejillas o cajas para tubos o bolsas plásticas con zipper.

Pinzas de punta fina.

Algodón.

Violeta de genciana y/o agua oxigenada.

Encendedor.

Toallitas de cloro.

Tabla para corte.

Marcador resistente al agua y al alcohol.

Hielo y hielera o tanque de nitrógeno líquido.

Pizeta con alcohol o cloro.

Viales con RNA-Later.

Colecta de murciélagos

Redes de niebla de varios tamaños, preferentemente de monofilamento.

Tubos o postes.

Tensores para los tubos.

Estacas para sujetarlos al suelo.

Trampas de arpa.

Red entomológica.

Bolsas de manta.

Guantes de diferentes grosores.

Lámpara de cabeza y baterías de repuesto suficientes.

GPS, baterías.

Masking tape.

Plumas de tinta indeleble.

Grabación de murciélagos

Tablas con clip para tomar datos.

Formatos de toma de datos.

Audífonos.

Lámpara de cabeza con buena iluminación y suficiente batería.

Micrófono y grabadora Ultra Sound Gate.

Computadora Dell con Avisoft Recorder, BatSound Pro y SonoBat.

Líneas de nylon y demás material para construir tirolesas (incluye, donde se pueda, postes, escaleras o equipo para trepar árboles).

Otros equipos de grabación de murciélagos no uniformizados por el proyecto (disponibilidad dependiendo del grupo de trabajo: Pettersson –varios modelos-, Ultramic, Minimic, Wildlife Acoustics, etc.), con el equipo de grabación y almacenamiento correspondiente.

Otros equipos de confinamiento de murciélagos (jaulas de vuelo, túneles, etc.).

Fotografía

Cámara que permita obtener una resolución de imagen de al menos 300 dpi, de preferencia que grabe en formato RAW (cada archivo es al menos 10 veces más grande que el mismo en jpg): Cannon, Nikon, posiblemente Fuji y Sony (revisar en cada caso individual). Se necesita una lente macro con una muy buena capacidad de acercamiento (3 a 10 cm).

Baterías cargadas.

Cargador.

Tarjetas de memoria.

Lector de tarjetas si es necesario.

Procesamiento de los individuos capturados
Hoja de datos de campo.
Pesolas.
Vernier (mm).
Lápices, borradores, sacapuntas o puntillas.
Guías de identificación.
Lupa.
Preparación de ejemplares colectados
Pesolas o balanza electrónica.
Vernier.
Algodón.
Tijeras finas y/o bisturí.
Pinzas finas.
Alfileres.
Tabla o cartón o unicel para montar los ejemplares.
Catálogo de preparación (Formato 3).
Charola para preparación.
Aserrín o harina de maíz.
Etiquetas para piel.
Etiquetas para cráneo.
Pluma con tinta indeleble.
Lápiz.
Hilo.
Aguja.
Otros
Computadora(s)

Disco(s) duro(s)

Extensiones eléctricas y/o multicontactos.