MODELACION DE LA RIQUEZA Y DISTRIBUCION POTENCIAL DEL BOSQUE HUMEDO DE MONTAÑA

CONABIO JM013

José Luis Villaseñor, Lauro López-Mata, Gustavo Cruz-Cárdenas, Enrique Ortiz, Joselin Cadena

vrios@ib.unam.mx

MANUAL DE PROCEDIMIENTOS

Este "Manual de Procedimiento" describe los procesos técnicos empleados para el desarrollo de los modelos de distribución potencial de las 200 especies comprometidas en el Proyecto Modelación de la riqueza y distribución potencial del Bosque Húmedo de Montaña, CONABIO JM013. Cubre los aspectos de los criterios de selección de los registros de presencia, la configuración de Maxent, la evaluación del modelo mediante una prueba binomial y la conversión del modelo logístico a un modelo booleano. En este "Manual de Procedimiento" se usan los siguientes programas: Excel, Access, Arcmap, Quantum-GIS, ILWIS y R, por lo que se recomienda tener experiencia en el manejo de estos paquetes.

Diagrama de flujo con los procesos explicados en este Manual de Procedimiento.

PROCEDIMIENTO

SELECCIÓN DE REGISTROS

1) Seleccionar los registros de la base de datos correspondiente de la especie a modelar. Los registros deben de tener las coordenadas en formato grados decimales, la latitud en valores positivos y la longitud oeste en valores negativos.

Visualizar los datos en ArcMap.

Esta visualización tiene como propósito detectar aquellos registros que se ubican fuera de la región continental del país. Si no hay problemas en la distribución de los registros continuar con el procedimiento. Si se detecta algún registro fuera, verificar la correcta identificación de la especie, la correcta georreferenciación de la localidad de colecta, la correcta captura de los datos y la correcta conversión al formato grados decimales. Volver a mapear los registros en ArcMap hasta tener todos los registros dentro del área continental del país. Asegurarse de que los cambios hechos se recapturen en la base de datos del proyecto que se ha de entregar a CONABIO.

NOTA: Antes de iniciar las siguientes pruebas se recomienda generar carpetas en "C:/" por especie. En cada carpeta creada por especie se crearán carpetas por cada prueba que se realice para la modelación:

prueba_R prueba_Ilwis prueba_quantum csv_Maxent ArcMap Maxent final

También se recomienda que los archivos generados en las pruebas tengan siempre un acrónimo haciendo referencia al nombre de la especie ejemplo: Cuphea graciliflora=cupgra.

Crear una base ya sea en Excel o en Access, en donde se lleve un registro de las especies a modelar, con los siguientes campos que ayudarán a registrar los resultados de las pruebas que se apliquen: Nombre de la especie, acrónimo, prueba R, xrange este, xrange oeste, yrange sur, xrange norte, distancia Ilwis, umbral de corte, pvalue.

PRUEBA DE ALEATORIEDAD

2) Prueba de Aleatoriedad utilizando el paquete R 2.15.1:

Crear una carpeta con el nombre de la primera prueba, se recomienda que se llame "prueba_R"

A los registros georreferenciados de la especie se les aplicará una prueba de aleatoriedad en R (R DevelopmentCoreTeam, 2012), es decir, si los registros se distribuyen espacialmente al azar o no (Bivand y Pebesma, 2008).

• Generar un archivo delimitado por comas (csv) y guardarlo en la carpeta "prueba_R"; con el orden de los siguientes tres campos y los encabezados:

- I. id identificador autonumérico del registro.
- II. x coordenadas de longitud en un formato grados decimales y con valor negativo (oeste).
- III. y coordenadas de latitud en formato grados decimales y con valor positivo (norte).

NOTA: Los nombres de los campos deben de estar en minúsculas, debido a que el script en R que realiza esta prueba así los requiere. Es importante también verificar que los campos estén declarados como numéricos, es decir, no como campos de tipo texto. Si la prueba en R manda un mensaje de error diciendo que los datos no son numéricos (non-numeric) verifique que sus datos estén declarados como numéricos en Excel o Access.

- Abrir R Abrir R muestra la pantalla R Console, en: "<u>Archivo / Abrir Script/</u>" seleccionar la carpeta en donde guardo los Script. Abrirá el script denominado "CRS.R."
- I. Al cargarlo se abre la siguiente ventana:

En la línea <u>reg=read.csv</u> cambiar el directorio por la ruta nueva del archivo csv, como se muestra en el ejemplo: reg=read.csv ("C:/Modelación/Amptux/prb_ale R/amptux.csv ").

Nota: Es muy importante invertir las diagonales de la siguiente forma: si están \ cambiarlas a / , para cambiar las diagonales: tecla + tecla 7 (shift+7).

Seleccionar las líneas como se muestra en la siguiente figura:

Dar botón derecho, del menú que aparece dar "Correr línea o seleccionar". Tras unos instantes R muestra un resumen de los resultados:

spatstat 1.22-1 Type 'help(spatsta			
Type 'help(spatsta			
Matert name	t)' for an overv.	iew of spatstat	
Latest, news)' for news on la	atest version	
'licence.poly	gons()' for lices	nce information on polygon calculations	
Mensajes de aviso	perdidos		
1: package 'spatst	at' was built und	der R version 2.12.2	
2: package 'deldir	' was built under	r R version 2.12.2	
> library(gstat)			
Loading required p	ackage: sp		
Error: package 'sp	acetime' required	d by 'gstat' could not be found	
Además: Mensajes d	le aviso perdidos		
1: package 'gstat'	was built under	R version 2.15.0	1.00
2: package .sb. wa	is built under R 1	Version 2.12.2	
> regreed could's	/ortiz/abies/rel:	inform courts	
> summary(red)	The sent test and a seat	a di a contra e contra di	
10	x	V	
Min. : 2.00	Min. :-106.42	Min. :17.01	=
1s Qu.: 31.25	1st Qu.:-101.47	1st gu.:19.09	
Me ian : 60.50	Median : -99.74	Median :19.34	
Mein : 60.50	Mean :-100.36	Mean :19.37	
3r Qu.: 89.75	3rd Qu.: -99.00	3rd Qu.:19.63	
Mai. :119.00	Max. : -96.28	Max. :25.14	
>			-

Observar los datos del recuadro, en particular las columnas x y y, note los valores Min. y Max.

II. Regresando al script en la línea <u>ow=as.owin</u> (no confundir con la línea ow2=as), cambiar los valores de <u>xrange</u> y <u>yrange</u> en la siguiente línea: <u>(list(xrange=c(-99.6,-91.5),yrange=c(15.5,24.0)))</u> por aquellos valores mínimos y máximos de longitud y latitud de sus propios datos (observar el recuadro de la figura de arriba). Para <u>xrange</u> se anota primero la longitud más hacia el oeste, luego una coma y posteriormente la longitud más hacia el este; para <u>yrange</u> primero la latitud más al sur separada por una coma y luego la latitud más al norte.

De esta forma la línea para los datos del recuadro quedarían así: ow=as.owin(list(xrange=c(-106.52,-96.18),yrange=c(16.91,25.24)))

NOTA: Se recomienda hacer un ajuste en los decimales originales para hacer un poco más grande la caja que contendrá los puntos. Ejemplo: para xrange subir una décima más hacia el oeste, sería xrange=-106.52 (en lugar del -106.42 original), mientras que para xrange bajar una décima más hacia el este, sería xrange=-96.18 (en lugar del -96.28 original); y para yrange bajar una décima más hacia el sur, yrange=16.91 (en lugar del 17.01 original) y para el yrange subir una décima más hacia el norte, yrange=25.24 (en lugar del 25.14 original). De esta forma aseguramos que todos los puntos entren en la caja que se creará.

III. Hechos los cambios seleccionamos con el ratón las líneas como se muestra en la pantalla de abajo

Una vez seleccionadas, damos botón derecho, aparece una ventana y allí seleccionamos "Correr línea o seleccionar".

NOTA:Si en la consola aparecen los siguientes mensajes de error: library(spatstat) Error en library(spatstat) : there is no package called 'spatstat' >library(gstat) Error en library(gstat) : there is no package called 'gstat'

- a) Abrir R y en el menú paquetes, en instalar paquetes, aparece una ventana nueva llamada CRAN mirrow, seleccionar el espejo mas cercano a su ciudad (Mexico Texcoco).
- b) Luego aparece una nueva ventana llamada Packages allí seleccionar <u>gstat</u> y/o<u>spatstat</u>, dar OK. A continuación se muestran unas barras del proceso de instalación. Fin.
- IV. Si no aparece ningún Error. En la ventana de R Console aparecen algunas operaciones y el resumen de esta parte del script. También se abre una ventana con los puntos mapeados sobre el rectángulo especificado con el xrange y yrange como se muestra en la siguiente figura.

R # Conneie	R & Graphice Device 2 (AUTH)	1000 M
<pre>- required.ctv(*C:/ortin/oblen/seligiosi.csv*) - required.ctv(*C:/ortin/oblen/seligiosi.csv*) - id</pre>		reg.ppp
		° ø% °

Regresamos al script y ahora seleccionamos las siguientes líneas: (ver figura)

Seleccionadas, damos botón derecho al ratón, aparece una ventana y de allí escogemos "Correr línea o seleccionar".

La línea negra son los valores de los registros observados, la línea roja punteada son los valores teóricos esperados, la zona en gris son los intervalos de confianza de los valores teóricos esperados.

Si los valores de los registros (observados, línea negra) se encuentran por encima de los valores

teóricos (línea roja), entonces los registros se encuentran agrupados, es decir, no distribuidos aleatoriamente. Si los valores de los registros se encuentran dentro de los intervalos de confianza (zona gris), entonces los registros se encuentran azarosamente distribuidos. Pero si los valores de los registros (línea negra) se encuentran por debajo de los intervalos de confianza (zona gris) y los valores teóricos (línea roja), entonces los registros se encuentran dispersos. Los puntos deben estar azarosamente distribuidos o dispersos para pasar la prueba de aleatoriedad.

NOTA: Si los registros SÍ pasan la prueba de aleatoriedad, estos son particionados en 75% para entrenar y 25% para validar el modelo. Y se sigue el siguiente procedimiento:

- Abrir ArcMap, crear un shp. de puntos a partir de los registros de la especie, enseguida buscar la extensión: "<u>Geostatistical Analyst/Subset Features</u>", se abre una ventana nueva.
- En "Input features" seleccione la capa de puntos .shp que creó previamente.
- En "<u>Output training featuresclass</u>" dar el nombre y el directorio de salida del nuevo shp. que se creará.
- En "Output test feature class (optional)" déjelo en blanco.
- En "<u>Size of training featuresubset (optional)</u>" escriba el valor de 75, en "<u>Subsetsizeunits</u> (<u>optional</u>)" seleccione "PERCENTAGE_OF_INPUT" para indicar que el valor de "75" es el porcentaje. Finalmente dé OK.
- Ahora los registros están en un 75% (Training) y un 25% (Test), pasarlos a archivos csv (delimitado por comas). Se pueden abrir en Excel y darles el formato para cargarlos en Maxent: los archivos llevan el acrónimo de la especie+longitud (x) +latitud (y), sin encabezados. Por último guardarlos como tipo csv (delimitado por comas) con el nombre del acrónimo_training y acrónimo_Test en la carpeta de csv_Maxent.
- Pasar a la modelación en el paso 6).

En el ejemplo de la figura de la grafica de arriba, muestra que los valores de los registros se encuentran por encima del intervalo de confianza, por lo que los registros se encuentran agrupados, es decir, hay una autocorrelación entre ellos, por lo que **NO** pasan la prueba de aleatoriedad. En estos casos el siguiente paso será: aplicar un análisis de patrones en Ilwis 3.7. Este consiste en calcular la probabilidad de 1.0 de encontrar un registro a cierta distancia. Dicho análisis se asemeja al valor del rango de un variograma, que es la distancia en el cual los registros ya no están autocorrelacionados (Hengl, 2007).

Concluida la prueba de aleatoriedad podemos cerrar R.

NOTA: Antes de hacer la prueba en Ilwis:

- Abrir ArcMap cargar una tabla ya sea de Excel o Access que contenga un identificador numérico (id), el nombre de la especie o su acrónimo, la longitud en grados decimales (x) y la latitud en grados decimales (y).
- Dar click derecho sobre la tabla seleccionar Display XY Data. Se generan los de puntos como una capa de eventos (Events).
- Después dar click derecho sobre la nueva capa creada con los puntos, seleccionar "<u>Data/ Export Data</u>", dar el nombre y ubicación del nuevo archivo shape con los puntos.
- Se recomienda que el shape de puntos se guarde en la carpeta de prueba_R.

ANÁLISIS DE PATRONES 3) Análisis de Patrones utilizando Ilwis 3.4:

Crear una carpeta con el nombre de la prueba, se recomienda que se llame prueba_Ilwis.

I. Abrir Ilwis 3.4 e importar el shape con los puntos previamente generado (guardado en la carpeta prueba_R con el nombre del acrónimo.shp). En el menú principal dar en: "<u>File/</u><u>Import / Map</u>". Aparece la ventana <u>Import</u>, seleccionar en la pestaña del directorio C
 Interfectoria en donde se guardo el shape de puntos y abrir el shape file.

	Edit Operations View Window	/ Help
	Create	•
	Open	
	Open As Table	
	Open Pixel Information	
	Create Pyramid Layers	рса
	Preferences	
	Setup Digitizer	s 3.4
	Map Reference	3.e
	Import	• Map
	Export	Table
	Evit Alt+ FA	Via GDAL
ere		T General Raster
		and a second sec
	*	<u> </u>
		· · · · · · · · · · · · · · · · · · ·
*		· · · · · · · · · · · · · · · · · · ·
	ofFormet	
< Imp	of Format Arc.View.SHP shape file	
e linp Inp Dut	ot Format (Arc.New SHP shape file	
e linp	ort Format Arc./View. SHP shape file	
< Imp Dut	of Fornat (Arc/New SHP shape file	
Imp Cut	of Format Arc/View SHP shape file	

En "Import Format" dar el formato de importación este caso será un "Arc/View SHP shape file" y

en la ventana "Output/Filename", dar un nombre y directorio donde se importará el mapa de puntos para Ilwis 3.4 (Se recomienda que se guarde en la carpeta creada prueba Ilwis) y finalmente OK.

NOTA: Ilwis 3.4, o versiones posteriores, a veces tiene un bug en esta parte, por lo que se interrumpe y sale del programa, no hay más que volver a abrir.

- , después Regresamos al menú principal, y seleccionamos los siguientes iconos: II. buscamos en la ventana izquierda "Operation-Tree" el directorio especificado donde se guardó el mapa de puntos de ilwis (prueba_Ilwis); enseguida en la ventana derecha aparece un rectángulo con unos puntos de colores (recuadro rojo en la imagen). Darle doble clic, aparece la ventana "Display Options-Point Map" dar OK. Aparecen una nueva ventana con los puntos de los registros.

Regresar a la ventana original de "Ilwis3.4 Open", ir a: "Operations / Statistics / Points / III. Pattern Analysis". Aparece la ventana "Pattern Analysis", en ella indicar el mapa de puntos, dar el nombre de la tabla donde se guardarán los resultados del análisis y dar una descripción (opcional). Dar click en Show.

Bal	Visualization	*	1			
9 9 BBB	Raster Operation	s)	<u></u>			Date B D
	Image Processin	g ≯	19 19 13 19 19	22		
USIDED	Statistics	•	Histogram	ł		
Opera	Interpolation	×	Raster	- 10		
peration-List	Vector Operation	ns 🕨	MapList	- +		
B 🛄 Mode	Rasterize	•	Polygons	- F		
BAA	Vectorize		Segments	- >		
**	Table Operation	s 🕨	Points	×	Spatial	Correlation
÷.	DEM hydro-proc	sessing 🔸			Variog	ram Surface
ΞŒ	Script	•			Cross \	Variogram
G	-	-				V)
	Pattern Ana	lysis				X
F	Pattern Ana Point Map	lysis	ambar_styrac	iflua	•	X
F	Pattern Ana Point Map Dutput Table	lysis Liquid liqsta_pa	ambar_styrac	iflua	▼	X
F	Pattern Ana Point Map Dutput Table Description:	lysis Liquid liqsta_pa	ambar_styrac	iflua	•	X
F C L L	Pattern Ana Point Map Dutput Table Description: Liquidambar s	lysis iquid liqsta_pa tyraciflua_pi	ambar_styrac attern analysi:	iflua s	▼	X

En "<u>Point Map</u>" seleccionar nuestro mapa de puntos, en "<u>Output Table</u>" poner el acrónimo de la especie como se muestra en el ejemplo: **liqsta_pa** y en "Description" poner el nombre completo de la especie como en el ejemplo: **Liquidambar stayraciflua_pattern analysis**, por último dar "<u>Show</u>". Comienza a elaborar el análisis y despliega la <u>tabla con los resultados</u>.

Manual de Procedimiento para Modelación CONABIO JM013. 2014

File Ed	dit Columns Reco	ords View Help						
10.18	XBRE	· • • •						
1	Distance	ProbAllPnt	ProblPnt	Prob2Pnt	Prob3Pnt	Prob4Pnt	Prob5Pnt	Prob6Pnt .
121	0.9	0.2048	0.9658	0.9060	0.8803	0.8803	0.8718	0.8718
122	1.0	0.2209	0.9658	0.9231	0.9145	0.8889	0.8889	0.8718
123	1.1	0.2586	0.9658	0.9402	0.9316	0.9316	0.9060	0.8974
124	1.2	0,2863	0.9744	0.9573	0.9402	0.9316	0.9231	0,9060
125	1.3	0.3108	0.9829	0.9658	0.9573	0.9487	0.9487	0.9487
126	1.5	0.3473	0.9829	0.9658	0,9658	0,9573	0.9573	0.9573
127	1.6	0.3665	0.9915	0.9744	0.9658	0.9658	0.9658	0.9658
128	1.8	0.4402	0.9915	0.9915	0.9658	0.9658	0.9658	0.9658
129	2.0	0.4876	0.9915	0.9915	0.9658	0.9658	0.9658	0.9658
130	2.2	0.5492	0.9915	0.9915	0.9658	0.9658	0.9658	0.9658
131	2.4	0.5989	1,0000	1.0000	0.9744	0,9658	0,9658	0,9658
132	2.7	0.6403	1.0000	1.0000	0.9744	0.9658	0.9658	0,9658
133	3.0	0.6910	1.0000	1.0000	0.9829	0.9658	0.9658	0.9658
134	3.3	0.7272	1.0000	1.0000	0.9915	0.9744	0.9744	0.9744
135	3.6	0.7595	1.0000	1.0000	0.9915	0.9744	0.9744	0.9744
136	3.9	0.7862	1.0000	1.0000	0.9915	0.9744	0.9744	0.9744
137	4.3	0.8263	1.0000	1.0000	0.9915	0.9829	0.9829	0.9744
138	4.7	0.8711	1.0000	1.0000	1.0000	0.9915	0.9915	0.9915
139	5.1	0.9156	1.0000	1.0000	1.0000	0.9915	0.9915	0.9915
140	5.6	0.9377	1.0000	1.0000	1.0000	0.9915	0.9915	0.9915
141	6.2	0.9540	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
142	6.B	0.9611	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000
143	7.5	0.9661	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
144	8.2	0.9800	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
145	9.1	0.9900	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000-
146	10.0	0.9985	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000
in	0.0	0.0007	0.0855	0.0000	0.0000	0.0000	0.0000	0.0000 .
ax	15.0	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
vg	1.1	0.1558	0.4661	0.3647	0.3405	0.3232	0.3045	0,2868
tD	2.7	0.3037	0.3938	0.4270	0.4160	0.4132	0,4127	0.4052
um	161.1	23.3722	69.9085	54.7095	51.0683	48.4972	45.6756	43.0259 .

En esta ventana se puede observar un icono como una gráfica (graph, cuadro rojo en la imagen), selecciónelo; se abre una nueva ventana:

En "<u>Table</u>"se selecciona la tabla creada (**acrónimo_pa**), como "<u>X-axis</u>" seleccionar **Distance** y como "<u>Y-axis</u>"seleccionar **Prob1Pnt** (la probabilidad de encontrar un punto). OK. Aparece la siguiente gráfica.

Como eje X aparece la Distancia en grados y como eje Y la probabilidad de encontrar al menos 1 punto. Si damos un clic sobre un punto de la gráfica podemos ver que la distancia en la cual la probabilidad de encontrar un punto cercano es de 2.4 grados.

Si revisamos la tabla anterior podemos observar en la columna Prob1Pnt (probabilidad de encontrar un vecino) que el valor de 1 se encuentra a una distancia de 2.4 grados.

NOTA: Se recomienda anotar la distancia obtenida en Ilwis, en la base de datos ya sea de Excel o Access que se creó en el punto 1.

Terminado el análisis de patrones cerrar Ilwis.

4) El valor de la distancia se empleará para formar una cuadrícula en Quantum GIS 1.7.4.

Crear unas carpetas con los nombres de prueba_quantum y csv_Maxent.

I. Abrir **Quantum GIS 1.7.4.,** en el menú "<u>Capa / añadir capa vectorial</u>" aparece una ventana en "<u>Conjunto de datos</u>" damos en Explorar y buscamos el archivo shapefile (shp) de puntos que se guardó en la carpeta prueba_R; una vez seleccionado le damos Open.

Afadir capa katel. Criterio Abadir capa VML. Criterio Abadir capa vectorial Criterio Tipo de origen Criterio Archivo Directorio Base de datos Protocolo Colficación System Fuente Criterio Explorar		13	Nueva	•	2 8	3 8	1 1 1	S 18	0.3	3 10	
Añadir capa vectorial Intro Añadir capa vectorial Tipo de origen Archivo Directorio Base de datos Protocolo Codificación System Fuente Conjunto de datos Explorar			Affairth a spin vectorinatio Affairth a spin vectorinatio Affairth a spin vectorinatio Affairth a spin PostGSS Affairth a spin Spatialititis Adadith a capa WMSs Affairth a spin Spatialititis Adadith a spin Spatialititis Adadith a spin Spatialititis Affairth a spin Spatialititis Disautilities a section to the spin Spatialities Disautilities a spin Spatialities Disautilities Disautilities	201+2 201+2 201+2 201+2 201+2 201+2 201+2 201+7		•			2, 9, 		۶ (
	 Añadir Tipo de Arc Codific 	cap orige thive aciór	a vectorial Operation of System	Ba:	se de c	latos	() F	Protocolo	ß	×	

Puede aparecer una ventana llamada "Selector de sistema de referencia de coordenadas", por default selecciona el sistema WGS 84, dejarlo así y dar OK.

Luego en el menú principal buscar: "<u>Vectorial / Herramientas de Investigación / Cuadricula</u> <u>Vectorial</u>", seleccionamos y aparece la siguiente ventana: Cuadrícula vectorial.

Estension de la cuadricula		
religiosa		
Actualizar extensión a partir de capa	Actualizar extensión a partir de la vista del	mapa
X Min -106.4275	Y Min 17.0108333333	
X Máx 96.284722222	Y Máx 25.1458333333	
Producir cuadrícula como polígonos Producir cuadrícula como lineas		
archivo shape de salida		
C:/Ortiz/Abies/prueba_quantum/abierel	red.shp	Explora

En el recuadro "<u>Extensión de la cuadrícula</u>" hay que seleccionar el shape de puntos previamente cargado. Para que la cuadrícula a formar cubra la extensión de los puntos, dé clic en el botón "<u>Actualizar extensión a partir de capa</u>", inmediatamente se llenan los valores de XY mínimo y máximo. En el recuadro "<u>Parámetros</u>" dar el tamaño de la celda en X, de acuerdo a lo calculado por <u>Pattern Analysis de Ilwis</u> (en el ejemplo la distancia fue de 2.4). Activar la casilla "<u>Bloquear relación 1:1</u>" si no estuviera activada. De igual forma debe de estar activado "<u>Producir cuadrícula como polígonos</u>". Finalmente en "<u>Archivo shape de salida</u>" explore y especifique la ruta y el nombre del archivo con la cuadrícula (**NOTA: Se recomienda guardar el nuevo archivo shapefile que se genere en la carpeta prueba_quantum con el siguiente nombre: acrónimo de la especie_red.**). Dar OK. Aparecerá una ventana pidiendo añadir la nueva capa al panel de capas, decirle que Sí. Cerrar la ventana Cuadrícula vectorial.

De nuevo en el proyecto principal en Quantum se añade la cuadrícula al proyecto. Ahora tiene los puntos y la cuadrícula. A continuación se asignará a cada punto la celda correspondiente. En el menú "<u>Vectorial / Herramientas de geoproceso / Unión</u>", aparece una ventana como la siguiente:

Capa vectorial de entrada	3	
Liquidambar_styraciflua		
Capa de unión		
red_quantum		
Archivo shape de salida 1odelacion/liqsty/UNION_	ls_redquantum.shp E	xplorar

Como "<u>Capa vectorial de entrada</u>" indique la capa con los puntos, como "<u>Capa de unión</u>" indique el nombre de la cuadrícula; en "<u>Explorar</u>" señale la ruta y el nombre del archivo de unión (**NOTA: Se recomienda que este nuevo shapefile se guarde en la misma carpeta de prueba_quantum con el nombre de: acrónimo de la especie_union.**), dar OK. Aparecerá una ventana pidiendo añadir la nueva capa al panel de capas, decirle que Sí.

Puede aparecer una ventana llamada "Selector de sistema de referencia de coordenadas", por default selecciona el sistema WGS 84, dejarlo así y dar OK.

Cerramos la ventana Unión.

En el proyecto general, se añade la capa de unión al proyecto (capa de puntos). Dar botón derecho sobre el nombre de la capa de unión en el panel de capas para abrir la tabla de atributos. Se observa que cada punto tiene un campo "ID2", correspondiente al ID de la celda donde está ubicado, este "ID2" será empleado para seleccionar al azar un solo registro por celda.

II. De vuelta al menú principal de Quantum buscar en: "<u>Vectorial / Herramientas de</u> <u>investigación / Selección aleatoria dentro de subconjuntos</u>". Se abre una ventana como la siguiente:

🕺 Selección aleatoria dentro de subc 🖓 🗾 🏹
Capa vectorial de entrada
UNION_ls_redquantum
Campo del subconjunto de entrada (campo ID único)
id 💌
Seleccionar aleatoriamente
Número de objetos espaciales
○ Porcentaje de objetos espaciales 50%
0% OK Close

Como "Capa vectorial de entrada" seleccione los puntos del proceso de unión, como "<u>Campo del</u> <u>subconjunto de entrada (campo ID único)</u>" seleccione ID2, de ser necesario verifique la tabla de atributos de la capa con la unión para ver el nombre del campo con los identificadores de las celdas. Active "<u>Número de objetos espaciales</u>" y especifique el valor como 1; por último damos OK y cerramos esta ventana. III. Se realiza la selección aleatoria de puntos, mismos que se pueden identificar en la capa con un color amarillo. Dé botón derecho sobre el nombre de la capa de unión, seleccione "<u>Abrir tabla de atributos</u>", la selección hecha se puede ver en la tabla de la siguiente forma:

	id V	x	y	ID_1	XMIN	XMAX	YMIN	
0	80	-91.6583	16.0978	NULL	-92.3042	-91.4041999	15.8878	
	80	-91.6811	16.1006	NULL	-92.3042	-91.4041999	15.8878	
)	80	-91.6814	16.0989	NULL	-92.3042	-91.4041999	15.8878	
3	80	-91.6997	16.5161	NULL	-92.3042	-91.4041999	15.8878	
4	80	-91,7039	16.1022	NULL	-92.3042	-91.4041999	15.8878	
5	71	92.1414	17.1136	NULL	-92.3042	-91.4041999	16.7878	
ñ	80	-92.2822	16.7756	NULL	-92.3042	-91.4041999	15.8878	
7	70	-92.3783	16.8647	NULL	-93.2042	-92.3042	16.7878	
R	70	-92.4986	16.8194	NULL	-93.2042	-92.3042	16,7878	
9	70	-92.5019	16.8097	NULL	-93.2042	-92.3042	16.7878	
10	70	-92.5736	16.9639	NULL	-93.2042	-92.3042	16.7878	
11	70	-92.7183	16.9022	NULL	-93.2042	-92.3042	16.7878	
12	70	-92.7667	16.9347	NULL	-93.2042	-92.3042	16.7878	
13	88	-92.8	15.65	NULL	-93.2042	-92.3042	14.9878	
14	88	-92.8286	15.6464	NULL	-93.2042	-92.3042	14.9878	
15	70	-92.8358	17.1686	NULL	-93.2042	-92.3042	16.7878	
16	70	-92.8533	17.0597	NULL	-93.2042	-92.3042	16.7878	
17	70	-92.8647	17.1142	NULL	-93.2042	-92.3042	16.7878	
1.8	70	-92.8794	17.1733	NULL	-93.2042	-92.3042	16.7878	
19	70	-92.8803	17.1211	NULL	-93.2042	-92.3042	16.7878	
20	70	-92.8992	17.1592	NULL	-93.2042	-92.3042	16,7878	
71	88	-92,9436	15.7228	NULL	-93.2042	-92.3042	14.9878	
1		(*******)	10.5256/1				4	6
		/ 0 0	1 3 1 B	uscar		en	· Busca	r

NOTA: Esta selección aleatoria de puntos nos servirá para entrenar el modelo; por lo que se guardará en un formato shapefile (shp) y en formato csv (archivo de limitado por comas), este último archivo se ocupará en Maxent para entrenar el modelo (Maxent necesita para modelar al menos 5 registros y 8 para modelar en este Proyecto).

IMPORTANTE: SI EN LA SELECCIÓN ALEATORIA DE LOS PUNTOS SE SELECCIONARON MENOS DE 8 REGISTROS, PASAR DIRECTAMENTE AL PASO VII.

IV. De otra vez botón derecho sobre el nombre de la capa de unión, ahora seleccione "Guardar selección como…" Aparece una ventana como la siguiente:

Formato	Archivo shape de ESRI	*
Guardar como	o idelacion/ligsty/select1_ls.shp Explore	ar
Codificación	System	•
	Layer CRS	•
SRC	WGS 84 Explore	ar.
Opciones de	a creación de OGR	
Opciones de	a creación de OGR	
Opciones de Fuente de d Capa	a creación de OGR	

En "<u>Formato</u>" seleccionar primero <u>Archivo shape de Esri (shp)</u> después en "<u>Explorar</u>" especifique la ruta y el nombre de archivo shapefile a crear (**se recomienda guardar este shape en la carpeta quantum con el nombre del: acrónimo_sa**), le damos en OK. El archivo se crea aunque no es cargado al proyecto. Inmediatamente volvemos a "Guardar selección como…" le cambiamos en "<u>Formato</u>" a uno de valores separados por comas (csv), después en "<u>Explorar</u>" le damos el directorio y nombre del archivo de salida (**se recomienda guardar el csv .en la carpeta csv_Maxent con el nombre del acrónimo_sa**).

V. Regrese a la tabla de atributos de la capa unión. Deben de continuar remarcados en azul los registros de la selección aleatoria, ahora invertirá la selección. En la ventana de la tabla de atributos en la parte inferior hay un conjunto de iconos, el tercero de izquierda a derecha se llama "Invertir selección (Ctrl+I)". Aplíquelo, se seleccionan ahora los registros y los puntos que antes no lo estaban. Cierre la tabla de atributos. Dé clic con botón derecho sobre el nombre de la capa de unión y seleccione nuevamente "Guardar selección como..." En la ventana que aparece de clic en "Formato" para cambiar el formato de salida a uno de Archivo shape de esri (shp), luego en "Explorar" para indicar la ruta y el nombre de un nuevo archivo shape con estos puntos de selección invertida (se recomienda guardar en la carpeta quantum con el nombre del acrónimo_si). Este archivo será empleado para particionarlo en un 25% que será empleado para validar el modelo.

NOTA: Edite el archivo csv (acrónimo_sa) que resultó de la selección aleatoria guardado en la carpeta csv_Maxent: edítelo y dele el formato adecuado para Maxent. El archivo csv debe llevar sólo los siguientes campos: un identificador de la especie (acrónimo), coordenadas en grados decimales de la longitud (x) y coordenadas en grados decimales de la latitud (y), los campos no llevan encabezados.

NOTA: El csv puede editarlo en Excel. Abrirlo y borrar los campos que no necesite y de nuevo guardar como un csv; para comprobar que se hicieron las correcciones puedo abrirlo después con el Bloc de notas.

abirel_sa: Bloc de notas		
Archivo Edición Formato Ver Ayuda		
abirel, -99.31194444,19.31 abirel, -105.5258333,23.745 abirel, -100.1663889,17.465 abirel, -98.5333333,17.78333333 abirel, -104.5205556,20.92527778 abirel, -104.1,19.55833333 abirel, -98.66666667,19.28333333 abirel, -102.5177778,19.74 abirel, -96.28472222,17.01083333 abirel, -100.1805556,20.93138889		*
•	Þ	

Este archivo será el empleado para crear el modelo en Maxent como el archivo Sample.

De los registros que resultaron de la selección inversa (shape de puntos acrónimo_si) sólo el 25% se empleará para validar el modelo, para hacer esta partición de puntos se utilizará ArcMap. Pasar al punto **5**).

VI. Si durante la selección aleatoria se seleccionaron menos de 8 registros hacer los siguientes pasos:

- Primero volver hacer la cuadrícula en Quantum, pero ahora utilizando otro valor de distancia obtenido en Ilwis.
- Abrir Ilwis en la barra de menus activar estos iconos: , después en la ventana izquierda "<u>Operation-Tree/Navigatior</u>", buscar la carpeta prueba_Ilwis de la especie con la que estamos trabajando, inmediatamente en la ventana derecha a parecen una serie de iconos damos doble clic en: amptux_pa, enseguida nos aparece la ventana "<u>DependentTable</u>" buscamos en la columna de una antes de "<u>prob1pnt</u>" 1.0000 ejemplo: si la "<u>Prob1Pnt</u>" 1.0000, la distancia fue de 3.6, ahora tomaremos la distancia menor de una "<u>Prob1Pnt</u>" 0.9767 y la distancia cambiara ahora será 1.8.
- Cerramos Ilwis y regresamos a nuestro proyecto en Quantum, en la ventana "Capas" damos clic derecho sobre la capa de unión y la capa de red y le damos eliminar del proyecto , <u>Eliminar</u>, sólo dejamos la capa de puntos; después en el menú

proyecto , sólo dejamos la capa de puntos; después en el menú "<u>Vectoria/ Herramientas de investigación/</u>

cuadrícula vectorial" repetimos los pasos II, III y IV.

• Si al repetir los pasos en la selección aleatoria se siguen seleccionando menos de 8 registros, entonces la prueba en Quantum se cancela y se prosigue a hacer una

partición del 50% del total de los registros, es decir la mitad de los puntos se utilizara para hacer la modelación y la otra mitad para validar el modelo; para hacer esta partición se utiliza una herramienta en ArcMap 9 ó 10.

• Si tiene ArcMap 9, cargar el shapefile de puntos (acronimo.shp) guardado en la carpeta prueba_R, enseguida buscamos la extensión "<u>Geostatistical Analyst/</u><u>CreateSubsets...</u>" (puede estar en la ventana de menú o buscarla en Tools/Extensions..) damos clic en Create Subsets, se abre una nueva ventana:

Create Subsets 🛛 🛛 🛛 🛛
Tip: Subsetting is the process of randomly dividing the database into two parts, the training and test datasets. Create a model using the training dataset and by using the validation tool you can evaluate how good the predictions are relative to the known values in the test dataset.
Input Layer:
< Atrás Siguiente > Cancelar
Create Subsets 🛛 🛛 🔀
Subsets (Percent/Samples) (50% / 59) (50% / 60) Training:
Control Development Constructions
C:\Modelación\Cupgra\cupgraquantum\cupgra_si119_s Subsets Names Training: cupgra_si119_training Testing: cupgra_si119_test
< Atrás Finalizar Cancelar

En "<u>Input layer</u>" seleccionamos el shape de puntos de la especie (acrónimo.shp) le damos siguiente, después en la siguiente ventana en el recuadro "Subsets (Percent/Samples)" vamos a cambiar el porcentaje a un 50% para Training (estos registros se utilizan para hacer el modelo) y 50% para Testing (estos registros se utilizan para validar el modelo) el porcentaje lo da por default, aunque si tiene otro cambiarlo. En el recuadro "<u>Output Personal Geodatabase</u>" le damos nombre y directorio de salida (**se recomienda guardar la nueva base en la carpeta ArcMap con el nombre del acrónimo_prt50**) por último le damos <u>Finalizar</u>. Al finalizar nos pregunta si quiere que los nuevos puntos se incorporen al proyecto le decimos que Sí.

• Ya en el proyecto ubicamos las nuevas capas una con el nombre del

acrónimo_training (se utilizara para elaborar el modelo) y la otra con el nombre del acrónimo_test (se utilizara para validar el modelo); entramos a la tabla de atributos de ambas, en la parte inferior de la tabla en el icono de "<u>Options</u>" le damos "<u>Export...</u>", inmediatamente aparece una ventana nueva en "Output table" buscamos en la carpeta

el directorio de salida del archivo que será importado en dbf. (se recomienda guardar los dos archivos en la carpeta de csv_Maxent uno con el nombre del acrónimo_tra y el otro con el nombre del acrónimo_tes). Abrir la carpeta csv_Maxent y editar los archivos dbf. que utilizarán para hacer el modelo y para validar el modelo de Maxent.

- Ya en la carpeta csv_Maxent seleccionar los archivos acrónimo_tra.dbf y acrónimo_tes.dbf; abrirlos con "<u>Excel</u>", quitar los campos que no se necesitan y darles el formato adecuado para Maxent, los archivos debe llevar sólo los siguientes campos: acrónimo de la especie, x, y (sin encabezados), por último guardarlos con el mismo nombre pero como tipo de archivos **csv** (**delimitado por comas**).
- Abrir Maxent, en la ventana "<u>Samples/ File</u>" buscar en la carpeta csv_Maxent el archivo csv nombrando acrónimo_tra.csv, seleccionarlo, inmediatamente aparecerá en la ventana de abajo con en acrónimo de la especie; después en la ventana "<u>Enviromental layers/ Directory/File</u>" se cargarán las capas ambientales, buscar en la carpeta en donde se hayan guardado los 7 componentes principales. De igual forma se seleccionarán en la parte de abajo las opciones de "<u>Create response curves</u>" y "<u>Do jackknife to measure variable importance</u>", después en "<u>Output directory</u>" buscar el directorio de salida (se recomienda guardar en la carpeta Maxent final); después en la parte de abajo seleccionar la opción "<u>Settings</u>" aparece una ventana en "<u>Basic/ Test simple file</u>" buscar en la carpeta csv_Maxent el archivo csv acrónimo_tes.csv, seleccionarlo; luego en la opción "<u>Advanced</u>" deshabilitar las opciones "<u>Extrapolate</u>" y "<u>Do clamping</u>" cerrar esta ventana y por último corremos en programa le damos en "<u>Run</u>".
- Continuar en los puntos: 7) y 8).

5) Selección del 25% de los puntos que resultaron de la selección inversa en Quantum:

Se utilizará Quantum para la selección de los puntos:

- I. Si tiene **Quantum**, abrirlo y cargar el archivo shapefile (shp) de puntos de la selección inversa guardado en la carpeta "<u>prueba_quantum</u>" con el nombre del **acrónimo_si**, se cargarán los puntos en el proyecto.
- II. Después en el menú Vectorial seleccione Herramientas de investigación y allí Selección aleatoria.

Tectorial Figure	1	
Herramientas de análisis		
Herramientas de investigación	🚳 Selecc	ión aleatoria
🔕 Herramientas de geoproceso	🕌 Selecc	ión aleatoria dentro de subco <mark>n</mark> juntos
🤝 Herramientas de geometría	🗳 Puntos	aleatorios
📄 Herramientas de gestión de datos	Nuntos	regulares
	🛣 Cuadrí	cula vectorial
	Contract Selecc	ionar por localización
	Polígo	no de la extensión de la capa

III. Se abre la siguiente ventana: "<u>Selección aleatoria</u>".

abirel_si Seleccionar aleatoriamente Número de objetos espaciales Porcentaje de objetos espaciales		itrada	
Seleccionar aleatoriamente Número de objetos espaciales Porcentaje de objetos espaciales 25%	abirel_si		
 Número de objetos espaciales Porcentaje de objetos espaciales 25% 	Seleccionar aleatori	amente	
Porcentaje de objetos espaciales	🔘 Número de obje	tos espaciales	1
	Porcentaje de o	bjetos espaciales	25%

En "<u>Capa vectorial de entrada</u>" buscamos el shape de puntos de la selección inversa (como ya se cargó en el proyecto buscarlo con la flecha . En las opciones de "<u>Seleccionar aleatoriamente</u>" habilitamos "<u>Porcentaje de objetos espaciales</u>" y en la ventana de porcentaje a su derecha tecleamos <u>25</u>. Finalmente damos clic en el botón <u>OK</u>.

Podemos ver ahora que de los registros de la selección inversa se seleccionaron el 25% de ellos aleatoriamente. Cerramos la ventana "Selección aleatoria".

En la lista de Capas damos botón derecho sobre el nombre de la capa de la selección inversa (que ahora además tiene el 25% de sus registros seleccionados) y seleccionamos "Guardar selección como…"

Se abre la ventana "<u>Guardar capa vectorial como...</u>". En "<u>Formato</u>" seleccionamos "<u>Valores</u> <u>separados por comas</u>". En "<u>Guardar como</u>" navegamos y guardamos el csv que se creará en el carpeta csv_Maxent. Finalmente damos clic en el botón <u>OK</u>.

Formato	Valores separados por comas	-	•
Guardar como	a/csv_maxent/abirel_si21.csv	Explorar	
Codificación	System		
	Layer CRS		•
SRC	[WGS 84	Explorar	
Fuente de d	iatos		
Fuente de d Capa	latos		

Una ventana emergente nos avisará de la exportación del archivo.

()	Se ha com	pletado la exportación	a archivo vectoria
U			
		OK	

IV. Haremos el mismo procedimiento pero para exportar este 25% de los puntos de la selección inversa como un shape a la carpeta Arcmap.

Formato	Archivo shape de ESRI	
Guardar como	giosa/Arcmap/abirel_si25.shp	Explorar
Codificación	System	
	Layer CRS	113
SRC.	WG5 64	Explorar
Fuente de d	fatos	
Fuente de d	latos	

V. Abrir la carpeta csv_Maxent y editar el archivo csv, en Excel o Access; eliminé las columnas no necesarias y deje solamente el acrónimo de la especie, x, y, sin encabezados ni nombres de campos. Vuelva a guardar como archivo csv. Puede abrir ahora el archivo con el Bloc de notas y verificar su correcta estructura.

abirel_si25.csv; Bloc de notas	X	
Archivo Edición Formato Ver Ayuda		
abirel, -99.21305556,19.24166667 abirel, -99.0033333,19.145 abirel, -99.31194444,19.31 abirel, -99.12027778,19.20361111 abirel, -99.0033333,19.145 abirel, -99.465,17.43361111 abirel, -99.444444,17.64722222 abirel, -100.1533333,17.50416667 abirel, -100.1536111,17.47555556 abirel, -100.1536111,17.47555556 abirel, -100.1536111,20.21444444 abirel, -98.7311111,20.21444444 abirel, -98.55,17.7833333 abirel, -103.5458333,19.59638889 abirel, -103.5697222,19.60638889 abirel, -103.6697424,19.6875 abirel, -98.75027778,18.95083333 abirel, -98.66666667,19.28333333 abirel, -98.66666667,19.28333333		* D
abire1,-100.3055556,19.38333333 abire1,-101.5197222,19.43055556 abire1,-101.5197222,19.43055556		
<i>x</i>		24

Este archivo será incorporado a Maxent como el archivo de validación del modelo (Test sample file).

VI. Ahora ya tenemos los dos archivos csv que se necesitan en Maxent. Pasar al paso 6)

MODELACIÓN CON MAXENT

Como capas ambientales se emplearán 7 componentes principales (PC) generados a partir de 20 variables ambientales (Cruz-Cárdenas et al. 2014). Los 7 PC y los registros de entrenamiento se utilizarán para modelar la distribución de la especie en Maxent. La configuración de Maxent fue por default (Phillips y Dudik, 2008), excepto la desactivación de "Extrapolate" y "Do clamping" (comunicación personal T. Peterson) y el formato de salida del modelo fue logístico.

6) Empleo de Maxent:

Crear una carpeta llamada Maxent final.

I. Abrir Maxent 3.3.3e y cargar en "<u>Samples</u>" el archivo csv (guardado en la carpeta csv_Maxent con el nombre del acrónimo_sa), que resultó de la selección aleatoria de 1 punto por celda en Quantum. Luego en "<u>Environmental layers</u>" cargar los 7 componentes que resultaron del PCA de las 20 variables (Habilitar todas las capas); habilitar también las opciones: "<u>Create response curve</u>", "<u>Make pictures of predictions</u>" y "<u>Do jacknife to measure variable importance</u>".

Sertples			Endering statistics	
ReconAmptorics material amption	sa 6 cov Browne	DirectoryFile 1 ona_	ocelecegral_29varimaxent.cache	Browse
		(e) pct	Continuous	
		t sq [s]	Continuous	
		(e) pc3	Continuous	
🗟 amplea		<u>e</u>] pc4	Confinations	
		i≩ pc5	Continuenee	
		i pct	Continuous.	
		2017	Continuous	
E Linux Autores			Create respon	se ornes 🖉
😧 Genelanda: Nontorno			Make pictures of p	redictions is
Product Wellarys		00	peckledie to measure variable in	opertance y
Thorshold Balance			Contract Time Income	Quille.
2 15 age features	Delpet delecto	C Mudelación/Amatur	trivaxent final	Browns
Kato Reatures	Projection inc	ers directors tie		Browse
flag		Gellings.	ling	

II. Después en "Settings/ Basic/ Test simple file" cargar el csv de validación (guardado en la carpeta csv_Maxent con el nombre del acrónimo_si25). De igual forma en "Advance" deshabilitar las opciones de: Extrapolate y Do clamping. Cerrar esta ventana y regresar al menú principal de Maxent.

A Maximum Entropy Parameters		Maximum Entropy Parameters	
Basic Advanced Experimental		Basic Advanced Experimental	
Random seed Give visual warnings Show tooltips Ask before overwriting Skip if output exists Remove duplicate presence records Write clamp grid when projecting On MESS analysis when projecting		Add samples to background Add all samples to background Write plot data Extrapolate Do clamping Wirite output grids Write plots Append summary results to maxentifesults.csv Cache ascil files	Predict to reg
Random test percentage	0	Maximum iterations	500
Regularization multiplier	1	Convergence threshold	0.00001
Max number of background points	10000	Adjust sample radius	0
Replicates	1	Log file	maxer&log
Replicated run type Crossvalidate		Default prevalence	0.5
Test sample file CHOrtzWodelacionWigstyUigsty_v.cs	Browse	Apply threshold rule	
		Sias file	Browne

III. Después en el menú principal, en "<u>Output directory</u>" buscar el directorio de salida (Maxent final) y finalmente dar clic en "<u>Run</u>" para que empiece a correr el programa.

Manual de Procedimiento para Modelación CONABIO JM013. 2014

Samples		Environmental layers	
ile ión\Amptux\csv maxent\amptux_sa 6.csv Bro	Directory/File s ana_	pca\pcagral_20var\maxent.cache Bro	wse
	₽ pc1	Continuous	-
	₽ pc2	Continuous	-
	∠ pc3	Continuous	-
✓ amptux	⊯ pc4	Continuous	•
	₽ pc5	Continuous	-
	✓ pc6	Continuous	-
	≥ pc7	Continuous	•
🖌 Linear features		Create response cur	ves 🖌
V Quadratic features		Make pictures of prediction	ons 🗹
Product features	Do	jackknife to measure variable importa	nce 🗹
✓ Threshold features		Output file type asc	
✓ Hinge features Output	t directory C:\Modelación\Amptux	Amaxent final	wse
Auto features Project	tion layers directory/file	Bro	wse
Bun	Settings	Help	_

EVALUACIÓN DEL MODELO

7) Validación del modelo con la prueba binomial:

- I. La validación del modelo se hará con una prueba binomial para evaluar si este es mejor que un modelo generado al azar (p>0.5). El número de éxitos se obtiene cuantificando cuantos registros de validación tienen valores logísticos por arriba del umbral de corte.
- II. Localizar y abrir en la carpeta Maxent_Final el archivo acrónimo.html (se abre con cualquier navegador de internet). Buscar la siguiente tabla:

Cumulative threshold	Logistic threshold	Description	Fractional predicted area	Training omission rate	Test omission rate	P-value
1.000	0.004	Fixed cumulative value 1	0.208	0.000	0.000	1.43E-23
5.000	0.026	Fixed cumulative value 5	0.136	0.000	0.000	4.12E-38
10,000	0.126	Fixed cumulative value 10	0.083	0.111	0.038	2.407E-59
7.914	0.090	Minimum training presence	0.097	0.000	0.038	9.475E-51
7.914	0.090	10 percentile training presence	0.097	0.000	0.038	9.475E-51
7.926	0.090	Equal training sensitivity and specificity	0.097	0.111	0.038	9.475E-51
7,914	0.090	Maximum training sensitivity plus specificity	0.097	0.000	0.038	9.475E-51
25.458	0.309	Equal test sensitivity and specificity	0.038	0.111	0.038	020
49.118	0.533	Maximum test sensitivity plus specificity	0.014	0.333	0.038	0E0
5.138	0.030	Balance training omission, predicted area and threshold value	0.132	0.000	0.000	3.021E-39
11.503	0.144	Equate entropy of thresholded and original distributions	0.076	0.111	0.038	0E0

- III. El umbral de corte empleado es el valor de Cumulative threshold igual a 10.000 (Liu et al., 2005, Pearson et al., 2007), que en la tabla de arriba es equivalente a un valor de Logistic threshold igual a 0.126. Se empleará este valor logístico para seleccionar los registros de validación a emplear en la prueba binomial.
- IV. Abrir el archivo acrónimo_samplePrediction.csv que está dentro de la carpeta Maxent_Final. Copie sólo los registros de validación (sólo aquellos que en el campo Test or train dicen "test") y péguelos en una hoja nueva de Excel. Ordene los registros de menor a mayor en el campo Logistic Prediction (última columna). Identifique y cuente los registros por arriba del umbral de corte (0.126 en nuestro caso) y cuantifique el total de registros de validación (26 en nuestro ejemplo). El tabla de abajo podemos observar que hay 25 registros arriba del umbral de un total de 26 (25 éxitos de 26 intentos).

	А	В	С	D	E	F	G
1	Х	Y	Test or train	Raw prediction	Cumulative prediction	Logistic predict	tion
2	-98.55	17.7833333	test	8.03E-05	6.363117361	0.057674467	
3	-98.7672222	19.4863889	test	0.00149797	49.180431	0.533002565	
4	-98.7227778	20.1655556	test	0.001570211	50.24726872	0.544705728	
5	-100.253056	19.8666667	test	0.001587843	50.42988696	0.54747353	
6	-98.5011111	19.0875	test	0.002142895	56.68716017	0.620165156	
7	-99.0322222	19.1747222	test	0.002405583	60.01183437	0.647001248	
8	-98.7311111	20.2144444	test	0.002515569	61.05593594	0.657143547	
9	-98.6661111	19.3438889	test	0.002841641	64.37396166	0.684055657	
10	-99.3625	19.495	test	0.002867757	64.91953018	0.686029523	
11	-98.7502778	18.9508333	test	0.003609458	70.53847607	0.733342735	
12	-99.1202778	19.2036111	test	0.003644934	70.99490039	0.735251006	
13	-99.2397222	19.2255556	test	0.003664235	71.12930906	0.736277744	
14	-99.2130556	19.2416667	test	0.004097556	73.38132143	0.757400877	
15	-99.3119444	19.31	test	0.004955429	76.08714077	0.790604866	
16	-100.2875	19.565	test	0.005219163	77.61083473	0.799059819	
17	-103.637778	19.5244444	test	0.005563572	78.66428695	0.809124574	
18	-100.1175	19.9763889	test	0.006065772	79.95246182	0.822116498	
19	-100.297222	19.7355556	test	0.006089618	80.05890383	0.822689559	
20	-99.3730556	19.2958333	test	0.006644549	82.00626627	0.835055378	
21	-98.6861111	19.0886111	test	0.009304338	91.33076347	0.876378353	
22	-100.273333	19.6530556	test	0.009900863	91.66484634	0.882954757	
23	-102.973056	18.7183333	test	0.010278181	91.87615061	0.886765008	
24	-101.532778	19.3936111	test	0.010935259	92.24413421	0.89283995	
25	-99.2983333	19.07	test	0.011327716	92.46416957	0.896167095	
26	-101.393056	18.2130556	test	0.011615373	92.62741957	0.898477479	
27	-100.281389	19.68	test	0.013116655	93.4794417	0.909040418	

V. Abrir la consola de R y cargar el script Pruebinom.R.

 C:\Ortiz\José Luis\Modelacion_conabio\scripts r\pruebinom.R - Editor R

 binom.test(25,26,p=0.5,alternative="greater")

En el ejemplo de arriba los números 25, 26 hacen referencia, el primero al número de aciertos o éxitos y el segundo son el total de registros para validar. Para correr el análisis seleccione la línea, dé botón derecho y de clic en "Correr línea o seleccionar".

VI. Al terminar el análisis en la consola se mostrarán los resultados como en la ventana de abajo.

```
R Console
                                                                       - 0 ×
Usted puede redistribuirlo bajo ciertas circunstancias.
Escriba 'license()' o 'licence()' para detalles de distribucion.
R es un proyecto colaborativo con muchos contribuyentes.
Escriba 'contributors()' para obtener más información y
'citation()' para saber cómo citar R o paquetes de R en publicaciones.
Escriba 'demo()' para demostraciones, 'help()' para el sistema on-line de ayuda,
o 'help.start()' para abrir el sistema de ayuda HTML con su navegador.
Escriba 'q()' para salir de R.
> binom.test(25,26,p=0.5,alternative="greater")
        Exact binomial test
data: 25 and 26
number of successes = 25, number of trials = 26 p-value = 4.023e-07
alternative hypothesis: true probability of suc
95 percent confidence interval:
 0.8301688 1.0000000
probability of success
             0.9615385
>
€ |
```

Observe el valor de p-value, si este es menor a 0.5, entonces el modelo es válido y resulta mejor que uno al azar, si el valor es igual o mayor a 0.5 entonces es modelo no es válido y no resulta mejor que un modelo generado al azar.

Otra forma de evaluar es leyendo el intervalo de confianza al 95%, en el ejemplo de arriba el intervalo es 0.8301688 - 1.0000000. El intervalo es alto y no contiene el valor de 0.5, por lo que el modelo se considera como válido.

Tras concluir la prueba binomial cerrar R.

8) Transformación del modelo obtenido en Maxent en una capa booleana en ArcMap:

Crear una carpeta llamada ArcMap.

El modelo se transformará a una capa booleana (presencia-ausencia), para esto se tomará como umbral de corte el valor logístico que represente 10% de error de omisión (Liu et al., 2005, Pearson et al., 2007).

NOTA: Antes de comenzar la transformación en la carpeta Maxent final copiar el archivo acrónimo.asc y pegarlo en la carpeta ArcMap.

Crear en la carpeta ArcMap dos carpetas una con el nombre de mapa raster y otra con el nombre de mapa bin.

I. Abrir ArcMap 9 ó 10 (Si ya se tiene un proyecto previo de la especie en ArcMap abrirlo), habilitar en "Arctool box/convertion tools/ToRaster/ASCII toRaster".

ASCII to Raster		
Input ASCII raster file C:\pruebaale\Queger\ArcMap\queger.asc	^	민 Help 스 Output data type (optional)
Output raster C:\pruebaale\Queger\queger_ras Output data type (optional) FLOAT		The data type of the output raster dataset. INTEGER - An integer raster dataset will be created.
	~	 FLOAT - A floating-point dataset raster will be created.
OK Cancel Environments << Hide Help	P	~

Aparece una ventana como la siguiente:

En "<u>Input ASCII raster file</u>" seleccionamos el archivo ASCII originado de Maxent (guardado en la carpeta ArcMap), y en "<u>Output raster</u>" se da el nombre y directorio de salida (guardar en la carpeta mapa raster con el nombre del acrónimo_ras), finalmente en "<u>Output data type</u>", se elige FLOAT, y damos Ok.

Después de un instante se carga el mapa al proyecto.

Una vez que se tiene el mapa damos doble clic sobre su nombre (acrónimo_ras) para abrir sus propiedades (Layer Properties) y seleccionamos la pestaña "<u>Symbology</u>" y aparece una ventana como la siguiente:

Layer Proper	ties	? 🔀			
General Source Extent Display Symbology					
Show: Classified	Draw raster grouping values into classes Import				
Stretched	Fields Value: <value> Normalization:</value>	Classification Natural Breaks (Jenks)			
	Color Ramp:				
	Symbol Range	Label			
	0 - 0.223446087	0 - 0.223446087 0.223446087 - 0.890293002			
1	Show class breaks using cell values	Diselay MaData as			
	5 Show class breaks using cell values				
		Aceptar Cancelar Aplicar			

Se cambia de "<u>Stretched a Classified</u>" y en "<u>Classification</u>" el número de clases a 2 y le damos aceptar.

II. Para conocer el valor logístico del umbral de corte en la carpeta Maxent final abra el archivo *acrónimo*.html, y busque la siguiente tabla de resultados:

Cumulative threshold	Logistic threshold	Description	Fractional predicted area	Training omission rate	Test omission rate	P-value
1,000	0.004	Fixed cumulative value 1	0.208	0.000	0.000	1.43E-23
5.000	0.026	Fixed cumulative value 5	0.136	0.000	0.000	4.12E-38
10,000	0.126	Fixed cumulative value 10	0.083	0.111	0.038	2.407E-59
2011	0.000	Minimum training presence	0.097	0.000	0.038	9.475E-51
7.914	0.090	10 percentile training presence	0.097	0.000	0.038	9.475E-51
7.926	0.090	Equal training sensitivity and specificity	0.097	0.111	0.038	9.475E-51
7.914	0.090	Maximum training sensitivity plus specificity	0.097	0.000	0.038	9.475E-51
25.458	0.309	Equal test sensitivity and specificity	0.038	0.111	0.038	0E0
49.118	0.533	Maximum test sensitivity plus specificity	0.014	0.333	0.038	050
5.138	0.030	Balance training omission, predicted area and threshold value	0.132	0.000	0.000	3.021E-39
11 503	0.144	Equate entropy of thresholded and original distributions	0.076	0.111	0.038	0E0

En ella se observa que un valor de Cumulative threshold del 10.000 equivale a un valor de Logistic threshold de 0.126. Este será el valor del umbral para convertir el mapa logístico a un mapa binario. Anotar el valor de Logistic threshold en la tabla de Acces donde se lleva el registro de las espacies.

III. Se hace un mapa binario a partir de una <u>reclasificación</u> se habilita en "ArcToolBox / <u>Spatial Analyst Tools / Reclass / Reclassify</u>" aparece la siguiente ventana:

Neclassify		
Input raster	^	Output raster
abirel_ras	▾ 🖆	
Reclass field		The output reclassified
Value	-	raster.
Reclassification		
Old values New values 0 - 0.126 0 0.127 - 0.944101 1 NoData NoData	Classify Unique	The output will always be of integer type.
-	Add Entry Delete Entries	
Load Save Reverse New Values	Precision	
Output raster		
C:\Ortiz\Abies\ArcMap\Mapa_bin\abirel_bin	6	
Change missing values to NoData (optional)		Ŧ
OK Cancel Environments	< Hide Help	Tool Help

En "<u>Input raster</u>" se selecciona el archivo raster de nterés (acrónimo_ras previamente cargado en el proyecto) y en "<u>Reclass field</u>" se cambia el campo a "Value" y en la ventana "<u>Old values</u>", se pone en la primera fila el rango de 0 a el valor del umbral en el ejemplo de arriba es de 0- 0.126, y como "<u>New Values</u>" es 0, en la fila de abajo el rango es de 0.127-0.944101 y el "<u>New values</u>" es 1, mientras que en "<u>NoData</u>" déjelo como está.

Finalmente en "<u>Output raster</u>" se le da el nombre y directorio de salida (guardar en la carpeta Mapa_bin con el nombre del acrónimo_bin), finalmente le damos Ok. Tras unos instantes añade el mapa reclasificado al proyecto.

Este mapa binario puede ser ya empleado para suma de los modelos o en diferentes operaciones como la intersección con otros temas (grids, provincias fisiográficas, etc.).

Literatura Citada:

- Bivand, R., Pebesma, E. and Gómez-Rubio, V. 2008. Applied spatial data analysis with R. Spring, NY.
- Cruz-Cárdenas, G., López-Mata, L., Villaseñor, J.L. y Ortiz, E. 2014. Potential species distribution modeling and the use of principal component analysis as predictor variables. Revista Mexicana de Biodiversidad 85: 189-199.
- Hengl, T. 2007. A Practical Guide to Geostatistical Mapping of Environmental Variables. European Commission, Joint Research Centre, Institute for Environment and Sustainability. Italy.
- Liu, C., Berry, P. M., Dawson, T. P. y Pearson, R. G. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385-393.
- Pearson R.G., Raxworthy C.J., Nakamura M. y Peterson A.T. 2007.Predicting species distribution from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34:102-117.
- Phillips S.J. y Dudik M. 2008.Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation.Ecography 31:161-175.
- R Development Core Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.